
1/71 .

Basics Specialization Replication No-threading Closing

The art of the language VM, or

Machine-generating virtual machine code, or

Almost zero overhead with almost zero assembly, or

My virtual machine is faster than yours

Luca Saiu
positron@gnu.org

http://ageinghacker.net

GNU Project

GNU Hackers’ Meeting 2017
Knüllwald-Niederbeisheim, Germany

August 25th 2017

About these slides: Copyright © Luca Saiu 2017, released under the CC BY-SA 4.0 license.
Updated version, last changed on 2017-10-02. The master copy is at http://ageinghacker.net/talks/

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

http://ageinghacker.net
http://ageinghacker.net/talks/

2/71 .

Basics Specialization Replication No-threading Closing

Introduction and history

My main long-term project is GNU epsilon. It’s a programming
language, meant to be efficient, but:

very “dynamic” in certain execution phases
written in itself, bootstrapped

— Too slow.

So I wrote a canonical threaded-code VM.
speedup 4-6x

— Too little.

So I made a separate repository to experiment with language VMs.
tried techniques from scientific papers (many by Anton Ertl
and the other GForth people)
added ideas of my own
it got completely out of hand

A new project, independent from epsilon.
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

2/71 .

Basics Specialization Replication No-threading Closing

Introduction and history

My main long-term project is GNU epsilon. It’s a programming
language, meant to be efficient, but:

very “dynamic” in certain execution phases
written in itself, bootstrapped

— Too slow.

So I wrote a canonical threaded-code VM.
speedup 4-6x

— Too little.

So I made a separate repository to experiment with language VMs.
tried techniques from scientific papers (many by Anton Ertl
and the other GForth people)
added ideas of my own
it got completely out of hand

A new project, independent from epsilon.
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

2/71 .

Basics Specialization Replication No-threading Closing

Introduction and history

My main long-term project is GNU epsilon. It’s a programming
language, meant to be efficient, but:

very “dynamic” in certain execution phases
written in itself, bootstrapped

— Too slow.

So I wrote a canonical threaded-code VM.
speedup 4-6x

— Too little.

So I made a separate repository to experiment with language VMs.
tried techniques from scientific papers (many by Anton Ertl
and the other GForth people)
added ideas of my own
it got completely out of hand

A new project, independent from epsilon.
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

2/71 .

Basics Specialization Replication No-threading Closing

Introduction and history

My main long-term project is GNU epsilon. It’s a programming
language, meant to be efficient, but:

very “dynamic” in certain execution phases
written in itself, bootstrapped

— Too slow.

So I wrote a canonical threaded-code VM.
speedup 4-6x

— Too little.

So I made a separate repository to experiment with language VMs.
tried techniques from scientific papers (many by Anton Ertl
and the other GForth people)
added ideas of my own
it got completely out of hand

A new project, independent from epsilon.
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

3/71 .

Basics Specialization Replication No-threading Closing

Why you should care

Interpreters are common:
programming languages
application scripting
shells
regular expressions. . .

We are getting used to unacceptably bad performance.

I will present my new software, but first I need to describe the
problem it solves. This will take a while.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

3/71 .

Basics Specialization Replication No-threading Closing

Why you should care

Interpreters are common:
programming languages
application scripting
shells
regular expressions. . .

We are getting used to unacceptably bad performance.

I will present my new software, but first I need to describe the
problem it solves. This will take a while.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

3/71 .

Basics Specialization Replication No-threading Closing

Why you should care

Interpreters are common:
programming languages
application scripting
shells
regular expressions. . .

We are getting used to unacceptably bad performance.

I will present my new software, but first I need to describe the
problem it solves. This will take a while.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

4/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Our running example — at first in C

Count down from two billion (here meaning 2 · 109):

C
int
main (void)
{

long i;
for (i = 2000000000; i != 0; i --)

/* Do nothing */;
return 0;

}

. . . does this program really count down?

[Hack the world!]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

4/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Our running example — at first in C

Count down from two billion (here meaning 2 · 109):

C
int
main (void)
{

long i;
for (i = 2000000000; i != 0; i --)

/* Do nothing */;
return 0;

}

. . . does this program really count down?

[Hack the world!]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

5/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Our running example — at first in C, now actually counting

Count down from 2 · 109 without optimizing away the entire loop:

C (with GNU extensions)
int
main (void)
{

long i;
for (i = 2000000000; i != 0; i --)

asm volatile ("" : : "r" (i)); // pretend to use i
return 0;

}

(We still want most GCC optimizations!)

[Demo: the down-counter in a few languages]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

5/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Our running example — at first in C, now actually counting

Count down from 2 · 109 without optimizing away the entire loop:

C (with GNU extensions)
int
main (void)
{

long i;
for (i = 2000000000; i != 0; i --)

asm volatile ("" : : "r" (i)); // pretend to use i
return 0;

}

(We still want most GCC optimizations!)

[Demo: the down-counter in a few languages]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

5/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Our running example — at first in C, now actually counting

Count down from 2 · 109 without optimizing away the entire loop:

C (with GNU extensions)
int
main (void)
{

long i;
for (i = 2000000000; i != 0; i --)

asm volatile ("" : : "r" (i)); // pretend to use i
return 0;

}

(We still want most GCC optimizations!)

[Demo: the down-counter in a few languages]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

6/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

You can play with the sources

I will (quickly) show some interpreters written in C.

In case you want to play with the examples yourself, the little
programs I’m showing here are on my server:

http://ageinghacker.net/ghm-2017

These are naïf C programs showing how interpreters work; the C
files in c-examples/ are not part of my new project.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

http://ageinghacker.net/ghm-2017

7/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

How simple interpreters work

The interpreted program is a data structure in memory.
“find the next point in the interpreted program, execute it, repeat
from start”

How to dispatch [“dispatch”: moving from a VM program point to
another]:

Abstract Syntax Tree (AST) interpreters
Linear programs

switch dispatching
direct threading
. . .

How to access data:
associative data structures (alists, hash tables)
VM registers
stacks

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

7/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

How simple interpreters work

The interpreted program is a data structure in memory.
“find the next point in the interpreted program, execute it, repeat
from start”

How to dispatch [“dispatch”: moving from a VM program point to
another]:

Abstract Syntax Tree (AST) interpreters
Linear programs

switch dispatching
direct threading
. . .

How to access data:
associative data structures (alists, hash tables)
VM registers
stacks

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

7/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

How simple interpreters work

The interpreted program is a data structure in memory.
“find the next point in the interpreted program, execute it, repeat
from start”

How to dispatch [“dispatch”: moving from a VM program point to
another]:

Abstract Syntax Tree (AST) interpreters
Linear programs

switch dispatching
direct threading
. . .

How to access data:
associative data structures (alists, hash tables)
VM registers
stacks

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

8/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Our down-counter as an Abstract Syntax Tree

i := 2000000000;
do

decrement i;
while i != 0;

sequence

assign

i literal

2000000000

do-while

decrement

i

!=

variable

i

literal

0
A program is an Abstract Syntax Tree data structure in memory:
heap-allocated structs and unions with lots of pointers. Each
node has an enum field to distinguish its kind.

[Blue: expression node; dashed line: child is a struct field of parent; black
arrow: parent contains pointer to child.]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

8/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Our down-counter as an Abstract Syntax Tree

i := 2000000000;
do

decrement i;
while i != 0;

sequence

assign

i literal

2000000000

do-while

decrement

i

!=

variable

i

literal

0
A program is an Abstract Syntax Tree data structure in memory:
heap-allocated structs and unions with lots of pointers. Each
node has an enum field to distinguish its kind.

[Blue: expression node; dashed line: child is a struct field of parent; black
arrow: parent contains pointer to child.]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

8/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Our down-counter as an Abstract Syntax Tree

i := 2000000000;
do

decrement i;
while i != 0;

sequence

assign

i literal

2000000000

do-while

decrement

i

!=

variable

i

literal

0
A program is an Abstract Syntax Tree data structure in memory:
heap-allocated structs and unions with lots of pointers. Each
node has an enum field to distinguish its kind.

[Blue: expression node; dashed line: child is a struct field of parent; black
arrow: parent contains pointer to child.]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

9/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Abstract Syntax Tree interpreter: expression

As each complex AST has sub-ASTs recursion is natural. AST data
structures are easy to define in Lisp and ML, a little less pretty in C.

long
interpret_expr (const struct expr *e, const long *vars) {

switch (e->expr_case) {
case expr_variable:

return vars [e->var_index];
case expr_constant:

return e->cnst;
case expr_is_different:

return (interpret_expr (e->sub1, vars)
!= interpret_expr (e->sub2, vars));

default:
error ();

}
}

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

10/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Abstract Syntax Tree interpreter: statement

void interpret_stmt (const struct stmt *s, long *vars) {
switch (s->stmt_case) {
case stmt_sequence:

interpret_stmt (s->sub1, vars);
interpret_stmt (s->sub2, vars);
break;

case stmt_assign:
vars [s->var_index] = interpret_expr (s->assigned_expr, vars);
break;

case stmt_decrement:
vars [s->var_index] --;
break;

case stmt_dowhile:
interpret_stmt (s->body, vars);
if (interpret_expr (s->guard, vars))

interpret_stmt (s, vars);
break;

default: error ();
}

}
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

11/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

AST interpreter performance

pointer chasing (load latency ∼ 3τ on L1d hit!)
many conditionals, often multi-way (mispredict penalty ∼ 15τ ,
per conditional branch!)
variable lookup slow (not shown in my sample code before)
recursion, often non-tail

sequence

assign

i literal

2000000000

do-while

decrement

i

!=

variable

i

literal

0

slow!
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

11/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

AST interpreter performance

pointer chasing (load latency ∼ 3τ on L1d hit!)
many conditionals, often multi-way (mispredict penalty ∼ 15τ ,
per conditional branch!)
variable lookup slow (not shown in my sample code before)
recursion, often non-tail

sequence

assign

i literal

2000000000

do-while

decrement

i

!=

variable

i

literal

0

slow!
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

11/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

AST interpreter performance

pointer chasing (load latency ∼ 3τ on L1d hit!)
many conditionals, often multi-way (mispredict penalty ∼ 15τ ,
per conditional branch!)
variable lookup slow (not shown in my sample code before)
recursion, often non-tail

sequence

assign

i literal

2000000000

do-while

decrement

i

!=

variable

i

literal

0

slow!
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

11/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

AST interpreter performance

pointer chasing (load latency ∼ 3τ on L1d hit!)
many conditionals, often multi-way (mispredict penalty ∼ 15τ ,
per conditional branch!)
variable lookup slow (not shown in my sample code before)
recursion, often non-tail

sequence

assign

i literal

2000000000

do-while

decrement

i

!=

variable

i

literal

0

slow!
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

11/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

AST interpreter performance

pointer chasing (load latency ∼ 3τ on L1d hit!)
many conditionals, often multi-way (mispredict penalty ∼ 15τ ,
per conditional branch!)
variable lookup slow (not shown in my sample code before)
recursion, often non-tail

sequence

assign

i literal

2000000000

do-while

decrement

i

!=

variable

i

literal

0

slow!
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

12/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

A good language to interpret

What is normally called a language “Virtual Machine” is an
interpreter for a lower-level linear program:

the program to interpret is stored as a contiguous array in
hardware memory
no nesting: no statements with sub-statements or expressions
with sub-expressions
no expressions, no variables
assembly-like feel: registers or stacks, explicit jumps

I’ll show you a linear-program interpreter written in C.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

12/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

A good language to interpret

What is normally called a language “Virtual Machine” is an
interpreter for a lower-level linear program:

the program to interpret is stored as a contiguous array in
hardware memory
no nesting: no statements with sub-statements or expressions
with sub-expressions
no expressions, no variables
assembly-like feel: registers or stacks, explicit jumps

I’ll show you a linear-program interpreter written in C.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

13/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

The down-counter as a linear program to be interpreted

set 2000000000, %r0
set -1, %r1

$L1: add %r0, %r1, %r0
bnz %r0, $L1
end

VM registers are an
array in hardware
memory.
The VM program is an
array in hardware
memory.
Only the interpreter’s
automatic C variables
are in hardware
registers.

insn_set
2000000000

0
insn_set

-1
1

insn_add
0
1
0

insn_bnz
0

insn_end

VM %r0
VM %r1
VM %r2
VM %r3
VM %r4

insn
regs

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

13/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

The down-counter as a linear program to be interpreted

set 2000000000, %r0
set -1, %r1

$L1: add %r0, %r1, %r0
bnz %r0, $L1
end

VM registers are an
array in hardware
memory.
The VM program is an
array in hardware
memory.
Only the interpreter’s
automatic C variables
are in hardware
registers.

insn_set
2000000000

0
insn_set

-1
1

insn_add
0
1
0

insn_bnz
0

insn_end

VM %r0
VM %r1
VM %r2
VM %r3
VM %r4

insn
regs

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

13/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

The down-counter as a linear program to be interpreted

set 2000000000, %r0
set -1, %r1

$L1: add %r0, %r1, %r0
bnz %r0, $L1
end

VM registers are an
array in hardware
memory.
The VM program is an
array in hardware
memory.
Only the interpreter’s
automatic C variables
are in hardware
registers.

insn_set
2000000000

0
insn_set

-1
1

insn_add
0
1
0

insn_bnz
0

insn_end

VM %r0
VM %r1
VM %r2
VM %r3
VM %r4

insn
regs

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

13/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

The down-counter as a linear program to be interpreted

set 2000000000, %r0
set -1, %r1

$L1: add %r0, %r1, %r0
bnz %r0, $L1
end

VM registers are an
array in hardware
memory.
The VM program is an
array in hardware
memory.
Only the interpreter’s
automatic C variables
are in hardware
registers.

insn_set
2000000000

0
insn_set

-1
1

insn_add
0
1
0

insn_bnz
0

insn_end

VM %r0
VM %r1
VM %r2
VM %r3
VM %r4

insn
regs

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

14/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

The simplest linear-program interpreter

What’s the C type of insn_set, insn_add, insn_bnz, insn_end?
It’s an enum insn: essentially an integer.
There are also pointers in the VM program array from an
element to another. . .
Linear-program interpreters work best with word-sized data:
objects as wide as a hardware register. unions are useful for
this:

C
union value
{

enum insn in;
long i; // or another integer type of the right width
union value *p;

};

This interpretation style is called switch dispatching.
[switch dispatching: C source and demo]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

14/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

The simplest linear-program interpreter

What’s the C type of insn_set, insn_add, insn_bnz, insn_end?
It’s an enum insn: essentially an integer.
There are also pointers in the VM program array from an
element to another. . .
Linear-program interpreters work best with word-sized data:
objects as wide as a hardware register. unions are useful for
this:

C
union value
{

enum insn in;
long i; // or another integer type of the right width
union value *p;

};

This interpretation style is called switch dispatching.
[switch dispatching: C source and demo]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

14/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

The simplest linear-program interpreter

What’s the C type of insn_set, insn_add, insn_bnz, insn_end?
It’s an enum insn: essentially an integer.
There are also pointers in the VM program array from an
element to another. . .
Linear-program interpreters work best with word-sized data:
objects as wide as a hardware register. unions are useful for
this:

C
union value
{

enum insn in;
long i; // or another integer type of the right width
union value *p;

};

This interpretation style is called switch dispatching.
[switch dispatching: C source and demo]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

14/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

The simplest linear-program interpreter

What’s the C type of insn_set, insn_add, insn_bnz, insn_end?
It’s an enum insn: essentially an integer.
There are also pointers in the VM program array from an
element to another. . .
Linear-program interpreters work best with word-sized data:
objects as wide as a hardware register. unions are useful for
this:

C
union value
{

enum insn in;
long i; // or another integer type of the right width
union value *p;

};

This interpretation style is called switch dispatching.
[switch dispatching: C source and demo]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

14/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

The simplest linear-program interpreter

What’s the C type of insn_set, insn_add, insn_bnz, insn_end?
It’s an enum insn: essentially an integer.
There are also pointers in the VM program array from an
element to another. . .
Linear-program interpreters work best with word-sized data:
objects as wide as a hardware register. unions are useful for
this:

C
union value
{

enum insn in;
long i; // or another integer type of the right width
union value *p;

};

This interpretation style is called switch dispatching.
[switch dispatching: C source and demo]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

15/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Problems with switch-dispatching

Performance of a switch-dispatching interpreter:
switch is somewhat inefficient (range checking)
The CPU branch target predictor can’t work well: one jumping
instruction with many possible targets, complex repetition
patterns.
Every VM instruction ends with another jump to the one
shared switch.slow!

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

15/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Problems with switch-dispatching

Performance of a switch-dispatching interpreter:
switch is somewhat inefficient (range checking)
The CPU branch target predictor can’t work well: one jumping
instruction with many possible targets, complex repetition
patterns.
Every VM instruction ends with another jump to the one
shared switch.slow!

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

15/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Problems with switch-dispatching

Performance of a switch-dispatching interpreter:
switch is somewhat inefficient (range checking)
The CPU branch target predictor can’t work well: one jumping
instruction with many possible targets, complex repetition
patterns.
Every VM instruction ends with another jump to the one
shared switch.slow!

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

15/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Problems with switch-dispatching

Performance of a switch-dispatching interpreter:
switch is somewhat inefficient (range checking)
The CPU branch target predictor can’t work well: one jumping
instruction with many possible targets, complex repetition
patterns.
Every VM instruction ends with another jump to the one
shared switch.slow!

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

15/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Problems with switch-dispatching

Performance of a switch-dispatching interpreter:
switch is somewhat inefficient (range checking)
The CPU branch target predictor can’t work well: one jumping
instruction with many possible targets, complex repetition
patterns.
Every VM instruction ends with another jump to the one
shared switch.slow!

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

16/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Computed goto

GCC introduced the C extension called computed goto or
labels-as-values:

The expression && label , of type void *, evaluates to the
address of the hardware machine instruction where the labeled
code begins; you can store the address and jump to it later.
The statement goto *expr jumps to the result of the
evaluation of expr .

We can use pointers to native code instead of instead of enums in
the VM program, at the beginning of every VM instruction.
This is called direct-threaded code (nothing to do with
multi-threading).

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

16/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Computed goto

GCC introduced the C extension called computed goto or
labels-as-values:

The expression && label , of type void *, evaluates to the
address of the hardware machine instruction where the labeled
code begins; you can store the address and jump to it later.
The statement goto *expr jumps to the result of the
evaluation of expr .

We can use pointers to native code instead of instead of enums in
the VM program, at the beginning of every VM instruction.
This is called direct-threaded code (nothing to do with
multi-threading).

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

16/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Computed goto

GCC introduced the C extension called computed goto or
labels-as-values:

The expression && label , of type void *, evaluates to the
address of the hardware machine instruction where the labeled
code begins; you can store the address and jump to it later.
The statement goto *expr jumps to the result of the
evaluation of expr .

We can use pointers to native code instead of instead of enums in
the VM program, at the beginning of every VM instruction.
This is called direct-threaded code (nothing to do with
multi-threading).

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

16/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Computed goto

GCC introduced the C extension called computed goto or
labels-as-values:

The expression && label , of type void *, evaluates to the
address of the hardware machine instruction where the labeled
code begins; you can store the address and jump to it later.
The statement goto *expr jumps to the result of the
evaluation of expr .

We can use pointers to native code instead of instead of enums in
the VM program, at the beginning of every VM instruction.
This is called direct-threaded code (nothing to do with
multi-threading).

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

17/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

The down-counter program for a direct-threaded VM

2000000000
0

-1
1

0
1
0

0

Compiled hardware machine
code for set

Compiled hardware machine
code for add

Compiled hardware machine
code for bnz

Compiled hardware machine
code for end

VM %r0
VM %r1
VM %r2
VM %r3
VM %r4

insn
regs

Instead of an enum identifier each VM instruction in the VM
program begins with a pointer to its native code.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

18/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded interpretation

In direct threading:
interpreting the VM instruction pointed by a C pointer p is
trivial: goto *p;
there’s no switch
no infinite loop or jump to a shared conditional: each VM
instruction “falls thru” to the next:

move insn forward
load the next VM instruction code pointer from it
goto * to the code pointer

Many different jumping hardware instructions: less bad for the
hardware branch target predictor

(also, still as compact in memory as switch-dispatching:
useful for small embedded systems, but not particularly for
GNU)

[C source and demo]
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

18/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded interpretation

In direct threading:
interpreting the VM instruction pointed by a C pointer p is
trivial: goto *p;
there’s no switch
no infinite loop or jump to a shared conditional: each VM
instruction “falls thru” to the next:

move insn forward
load the next VM instruction code pointer from it
goto * to the code pointer

Many different jumping hardware instructions: less bad for the
hardware branch target predictor

(also, still as compact in memory as switch-dispatching:
useful for small embedded systems, but not particularly for
GNU)

[C source and demo]
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

18/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded interpretation

In direct threading:
interpreting the VM instruction pointed by a C pointer p is
trivial: goto *p;
there’s no switch
no infinite loop or jump to a shared conditional: each VM
instruction “falls thru” to the next:

move insn forward
load the next VM instruction code pointer from it
goto * to the code pointer

Many different jumping hardware instructions: less bad for the
hardware branch target predictor

(also, still as compact in memory as switch-dispatching:
useful for small embedded systems, but not particularly for
GNU)

[C source and demo]
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

18/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded interpretation

In direct threading:
interpreting the VM instruction pointed by a C pointer p is
trivial: goto *p;
there’s no switch
no infinite loop or jump to a shared conditional: each VM
instruction “falls thru” to the next:

move insn forward
load the next VM instruction code pointer from it
goto * to the code pointer

Many different jumping hardware instructions: less bad for the
hardware branch target predictor

(also, still as compact in memory as switch-dispatching:
useful for small embedded systems, but not particularly for
GNU)

[C source and demo]
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

18/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded interpretation

In direct threading:
interpreting the VM instruction pointed by a C pointer p is
trivial: goto *p;
there’s no switch
no infinite loop or jump to a shared conditional: each VM
instruction “falls thru” to the next:

move insn forward
load the next VM instruction code pointer from it
goto * to the code pointer

Many different jumping hardware instructions: less bad for the
hardware branch target predictor

(also, still as compact in memory as switch-dispatching:
useful for small embedded systems, but not particularly for
GNU)

[C source and demo]
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

18/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded interpretation

In direct threading:
interpreting the VM instruction pointed by a C pointer p is
trivial: goto *p;
there’s no switch
no infinite loop or jump to a shared conditional: each VM
instruction “falls thru” to the next:

move insn forward
load the next VM instruction code pointer from it
goto * to the code pointer

Many different jumping hardware instructions: less bad for the
hardware branch target predictor

(also, still as compact in memory as switch-dispatching:
useful for small embedded systems, but not particularly for
GNU)

[C source and demo]
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

18/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded interpretation

In direct threading:
interpreting the VM instruction pointed by a C pointer p is
trivial: goto *p;
there’s no switch
no infinite loop or jump to a shared conditional: each VM
instruction “falls thru” to the next:

move insn forward
load the next VM instruction code pointer from it
goto * to the code pointer

Many different jumping hardware instructions: less bad for the
hardware branch target predictor

(also, still as compact in memory as switch-dispatching:
useful for small embedded systems, but not particularly for
GNU)

[C source and demo]
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

18/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded interpretation

In direct threading:
interpreting the VM instruction pointed by a C pointer p is
trivial: goto *p;
there’s no switch
no infinite loop or jump to a shared conditional: each VM
instruction “falls thru” to the next:

move insn forward
load the next VM instruction code pointer from it
goto * to the code pointer

Many different jumping hardware instructions: less bad for the
hardware branch target predictor

(also, still as compact in memory as switch-dispatching:
useful for small embedded systems, but not particularly for
GNU)

[C source and demo]
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

18/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded interpretation

In direct threading:
interpreting the VM instruction pointed by a C pointer p is
trivial: goto *p;
there’s no switch
no infinite loop or jump to a shared conditional: each VM
instruction “falls thru” to the next:

move insn forward
load the next VM instruction code pointer from it
goto * to the code pointer

Many different jumping hardware instructions: less bad for the
hardware branch target predictor

(also, still as compact in memory as switch-dispatching:
useful for small embedded systems, but not particularly for
GNU)

[C source and demo]
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

18/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded interpretation

In direct threading:
interpreting the VM instruction pointed by a C pointer p is
trivial: goto *p;
there’s no switch
no infinite loop or jump to a shared conditional: each VM
instruction “falls thru” to the next:

move insn forward
load the next VM instruction code pointer from it
goto * to the code pointer

Many different jumping hardware instructions: less bad for the
hardware branch target predictor

(also, still as compact in memory as switch-dispatching:
useful for small embedded systems, but not particularly for
GNU)

[C source and demo]
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

19/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded fallthru (nop): diagram

The zero-argument VM instruction nop does nothing and just falls
thru to the next instruction.
The jump destination address is pointed from memory (red arrow).
The green arrow is the pointer insn, already in a hardware register.

something

something

something

Compiled hardware machine
code for nop

Compiled hardware machine
code for whatever comes next

VM %r0
VM %r1
VM %r2
VM %r3
VM %r4

insn
regs

There is nothing between the code pointer for nop and the code
pointer for the next VM instruction because nop has no arguments.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

20/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded fallthru (nop): code

Here’s the source for the VM instruction nop in the
direct-threading interpreter:

GNU C
label_nop:

insn ++; // No args to skip, just the code pointer
goto * insn->label;

compiled (x86_64)
movq 8(%rax), %rdx #insn is in %rax; load (insn + 1)->label
addq $8, %rax #advance insn to the next instruction
jmpq *%rdx #jump to the address we loaded before

GCC has put insn in the hardware register %rax. The load (movq
on x86_64) follows the red arrow, from %rax + 8. The hardware
register %rdx is a temporary, holding the address where to jump.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

20/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded fallthru (nop): code

Here’s the source for the VM instruction nop in the
direct-threading interpreter:

GNU C
label_nop:

insn ++; // No args to skip, just the code pointer
goto * insn->label;

compiled (x86_64)
movq 8(%rax), %rdx #insn is in %rax; load (insn + 1)->label
addq $8, %rax #advance insn to the next instruction
jmpq *%rdx #jump to the address we loaded before

GCC has put insn in the hardware register %rax. The load (movq
on x86_64) follows the red arrow, from %rax + 8. The hardware
register %rdx is a temporary, holding the address where to jump.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

20/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded fallthru (nop): code

Here’s the source for the VM instruction nop in the
direct-threading interpreter:

GNU C
label_nop:

insn ++; // No args to skip, just the code pointer
goto * insn->label;

compiled (x86_64)
movq 8(%rax), %rdx #insn is in %rax; load (insn + 1)->label
addq $8, %rax #advance insn to the next instruction
jmpq *%rdx #jump to the address we loaded before

GCC has put insn in the hardware register %rax. The load (movq
on x86_64) follows the red arrow, from %rax + 8. The hardware
register %rdx is a temporary, holding the address where to jump.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

21/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded unconditional branch (b): diagram

The b VM instruction takes a label as its parameter: the next VM
program slot after b’s code pointer points to the beginning of the target
instruction (another slot in the program containing a code pointer).

Compiled hardware machine
code for b

Compiled hardware machine
code for the target instruction

VM %r0
VM %r1
VM %r2
VM %r3
VM %r4

insn
regs

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

22/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded unconditional branch (b): code

The (one-argument) VM instruction b in the direct-threading
interpreter:

GNU C
label_b:

insn = insn[1].p;
goto * insn->label;

compiled (x86_64)
movq 8(%rax), %rax # load jump destination from *(insn + 1)
jmpq *(%rax) # jump indirect via memory: another load

The first instruction loads the next insn, still pointing within the
program array. The jump-via-memory instruction chases a pointer
from it and obtains a pointer into a “blue” box, the hardware
instruction where to jump where the target VM instruction begins.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

22/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded unconditional branch (b): code

The (one-argument) VM instruction b in the direct-threading
interpreter:

GNU C
label_b:

insn = insn[1].p;
goto * insn->label;

compiled (x86_64)
movq 8(%rax), %rax # load jump destination from *(insn + 1)
jmpq *(%rax) # jump indirect via memory: another load

The first instruction loads the next insn, still pointing within the
program array. The jump-via-memory instruction chases a pointer
from it and obtains a pointer into a “blue” box, the hardware
instruction where to jump where the target VM instruction begins.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

23/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded conditional branch (bnz)

The two-argument VM instruction bnz in the direct-threading
interpreter:

GNU C
label_bnz:

if (regs[insn[1].i] != 0)
insn = insn[2].p;

else
insn += 3;

goto * insn->label;

compiled (x86_64, simplified)
movq 8(%rax), %rdx
cmpq $0, -256(%rbp,%rdx,8)
je L
movq 16(%rax), %rax # Like b
jmpq *(%rax)

L: addq $24, %rax # Fallthru
jmpq *(%rax)

Check the condition; if false skip past (je) unconditional branch
code, and into fallthru dispatch code.

Lots of hardware branches, depending on memory and on each
other.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

23/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded conditional branch (bnz)

The two-argument VM instruction bnz in the direct-threading
interpreter:

GNU C
label_bnz:

if (regs[insn[1].i] != 0)
insn = insn[2].p;

else
insn += 3;

goto * insn->label;

compiled (x86_64, simplified)
movq 8(%rax), %rdx
cmpq $0, -256(%rbp,%rdx,8)
je L
movq 16(%rax), %rax # Like b
jmpq *(%rax)

L: addq $24, %rax # Fallthru
jmpq *(%rax)

Check the condition; if false skip past (je) unconditional branch
code, and into fallthru dispatch code.

Lots of hardware branches, depending on memory and on each
other.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

23/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded conditional branch (bnz)

The two-argument VM instruction bnz in the direct-threading
interpreter:

GNU C
label_bnz:

if (regs[insn[1].i] != 0)
insn = insn[2].p;

else
insn += 3;

goto * insn->label;

compiled (x86_64, simplified)
movq 8(%rax), %rdx
cmpq $0, -256(%rbp,%rdx,8)
je L
movq 16(%rax), %rax # Like b
jmpq *(%rax)

L: addq $24, %rax # Fallthru
jmpq *(%rax)

Check the condition; if false skip past (je) unconditional branch
code, and into fallthru dispatch code.

Lots of hardware branches, depending on memory and on each
other.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

23/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct-threaded conditional branch (bnz)

The two-argument VM instruction bnz in the direct-threading
interpreter:

GNU C
label_bnz:

if (regs[insn[1].i] != 0)
insn = insn[2].p;

else
insn += 3;

goto * insn->label;

compiled (x86_64, simplified)
movq 8(%rax), %rdx
cmpq $0, -256(%rbp,%rdx,8)
je L
movq 16(%rax), %rax # Like b
jmpq *(%rax)

L: addq $24, %rax # Fallthru
jmpq *(%rax)

Check the condition; if false skip past (je) unconditional branch
code, and into fallthru dispatch code.

Lots of hardware branches, depending on memory and on each
other.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

24/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct threading dispatch performance

slow?
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

25/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct threading dispatch performance

The real question is whether we can do better, and where the
bottleneck is.

Is branching/fallthru the only source of inefficiency?

[Demo: quick timing against switch-dispatching]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

25/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Direct threading dispatch performance

The real question is whether we can do better, and where the
bottleneck is.

Is branching/fallthru the only source of inefficiency?

[Demo: quick timing against switch-dispatching]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

26/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) VM add: “fundamental”/RISC operations
Let’s look at how the VM instruction add %r3, %r0, %r1 is represented in the
VM program and what it needs to do in terms of hardware “operations”:

3
0
1

Compiled hardware machine
code for add

Compiled hardware machine
code for the following instruc-
tion

VM %r0
VM %r1
VM %r2
VM %r3

insn
regs

read VM register indices (load from insn[k] obtaining 3, 0, 1)
read VM input register contents from the VM register array using input
indices (load VM register elements %r3, %r0 using indices 3, 0)
do the actual sum
write result into VM register array (store into VM %r1 using index 1)
fallthru: increment-load-jump, as always

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

26/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) VM add: “fundamental”/RISC operations
Let’s look at how the VM instruction add %r3, %r0, %r1 is represented in the
VM program and what it needs to do in terms of hardware “operations”:

3
0
1

Compiled hardware machine
code for add

Compiled hardware machine
code for the following instruc-
tion

VM %r0
VM %r1
VM %r2
VM %r3

insn
regs

read VM register indices (load from insn[k] obtaining 3, 0, 1)
read VM input register contents from the VM register array using input
indices (load VM register elements %r3, %r0 using indices 3, 0)
do the actual sum
write result into VM register array (store into VM %r1 using index 1)
fallthru: increment-load-jump, as always

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

26/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) VM add: “fundamental”/RISC operations
Let’s look at how the VM instruction add %r3, %r0, %r1 is represented in the
VM program and what it needs to do in terms of hardware “operations”:

3
0
1

Compiled hardware machine
code for add

Compiled hardware machine
code for the following instruc-
tion

VM %r0
VM %r1
VM %r2
VM %r3

insn
regs

read VM register indices (load from insn[k] obtaining 3, 0, 1)
read VM input register contents from the VM register array using input
indices (load VM register elements %r3, %r0 using indices 3, 0)
do the actual sum
write result into VM register array (store into VM %r1 using index 1)
fallthru: increment-load-jump, as always

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

26/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) VM add: “fundamental”/RISC operations
Let’s look at how the VM instruction add %r3, %r0, %r1 is represented in the
VM program and what it needs to do in terms of hardware “operations”:

3
0
1

Compiled hardware machine
code for add

Compiled hardware machine
code for the following instruc-
tion

VM %r0
VM %r1
VM %r2
VM %r3

insn
regs

read VM register indices (load from insn[k] obtaining 3, 0, 1)
read VM input register contents from the VM register array using input
indices (load VM register elements %r3, %r0 using indices 3, 0)
do the actual sum
write result into VM register array (store into VM %r1 using index 1)
fallthru: increment-load-jump, as always

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

26/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) VM add: “fundamental”/RISC operations
Let’s look at how the VM instruction add %r3, %r0, %r1 is represented in the
VM program and what it needs to do in terms of hardware “operations”:

3
0
1

Compiled hardware machine
code for add

Compiled hardware machine
code for the following instruc-
tion

VM %r0
VM %r1
VM %r2
VM %r3

insn
regs

read VM register indices (load from insn[k] obtaining 3, 0, 1)
read VM input register contents from the VM register array using input
indices (load VM register elements %r3, %r0 using indices 3, 0)
do the actual sum
write result into VM register array (store into VM %r1 using index 1)
fallthru: increment-load-jump, as always

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

26/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) VM add: “fundamental”/RISC operations
Let’s look at how the VM instruction add %r3, %r0, %r1 is represented in the
VM program and what it needs to do in terms of hardware “operations”:

3
0
1

Compiled hardware machine
code for add

Compiled hardware machine
code for the following instruc-
tion

VM %r0
VM %r1
VM %r2
VM %r3

insn
regs

read VM register indices (load from insn[k] obtaining 3, 0, 1)
read VM input register contents from the VM register array using input
indices (load VM register elements %r3, %r0 using indices 3, 0)
do the actual sum
write result into VM register array (store into VM %r1 using index 1)
fallthru: increment-load-jump, as always

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

27/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

The VM instruction add (here direct-threaded), compiled

Is our three-operand add simple and fast, at least on a CISC?

GNU C
label_add:

regs[insn[3].i]
= (regs[insn[1].i]

+ regs[insn[2].i]);
insn += 4;
goto * insn->label;

compiled (x86_64, simplified)
movq 8(%rax), %rsi
movq 16(%rax), %rdx
addq $32, %rax
movq -8(%rax), %rcx
movq -256(%rbp,%rdx,8), %rdx
addq -256(%rbp,%rsi,8), %rdx # +
movq %rdx, -256(%rbp,%rcx,8)
movq (%rax), %rdx
jmpq *rdx

the actual addition costs only one hardware instruction (the
second addq, in black [which also includes one memory access]).
Fallthru to the next VM instruction: three hardware
instructions (increment-load-jump).
The other five hardware instructions only serve to access VM
registers (and on RISCs it’s even worse).

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

27/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

The VM instruction add (here direct-threaded), compiled

Is our three-operand add simple and fast, at least on a CISC?

GNU C
label_add:

regs[insn[3].i]
= (regs[insn[1].i]

+ regs[insn[2].i]);
insn += 4;
goto * insn->label;

compiled (x86_64, simplified)
movq 8(%rax), %rsi
movq 16(%rax), %rdx
addq $32, %rax
movq -8(%rax), %rcx
movq -256(%rbp,%rdx,8), %rdx
addq -256(%rbp,%rsi,8), %rdx # +
movq %rdx, -256(%rbp,%rcx,8)
movq (%rax), %rdx
jmpq *rdx

the actual addition costs only one hardware instruction (the
second addq, in black [which also includes one memory access]).
Fallthru to the next VM instruction: three hardware
instructions (increment-load-jump).
The other five hardware instructions only serve to access VM
registers (and on RISCs it’s even worse).

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

27/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

The VM instruction add (here direct-threaded), compiled

Is our three-operand add simple and fast, at least on a CISC?

GNU C
label_add:

regs[insn[3].i]
= (regs[insn[1].i]

+ regs[insn[2].i]);
insn += 4;
goto * insn->label;

compiled (x86_64, simplified)
movq 8(%rax), %rsi
movq 16(%rax), %rdx
addq $32, %rax
movq -8(%rax), %rcx
movq -256(%rbp,%rdx,8), %rdx
addq -256(%rbp,%rsi,8), %rdx # +
movq %rdx, -256(%rbp,%rcx,8)
movq (%rax), %rdx
jmpq *rdx

the actual addition costs only one hardware instruction (the
second addq, in black [which also includes one memory access]).
Fallthru to the next VM instruction: three hardware
instructions (increment-load-jump).
The other five hardware instructions only serve to access VM
registers (and on RISCs it’s even worse).

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

27/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

The VM instruction add (here direct-threaded), compiled

Is our three-operand add simple and fast, at least on a CISC?

GNU C
label_add:

regs[insn[3].i]
= (regs[insn[1].i]

+ regs[insn[2].i]);
insn += 4;
goto * insn->label;

compiled (x86_64, simplified)
movq 8(%rax), %rsi
movq 16(%rax), %rdx
addq $32, %rax
movq -8(%rax), %rcx
movq -256(%rbp,%rdx,8), %rdx
addq -256(%rbp,%rsi,8), %rdx # +
movq %rdx, -256(%rbp,%rcx,8)
movq (%rax), %rdx
jmpq *rdx

the actual addition costs only one hardware instruction (the
second addq, in black [which also includes one memory access]).
Fallthru to the next VM instruction: three hardware
instructions (increment-load-jump).
The other five hardware instructions only serve to access VM
registers (and on RISCs it’s even worse).

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

27/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

The VM instruction add (here direct-threaded), compiled

Is our three-operand add simple and fast, at least on a CISC?

GNU C
label_add:

regs[insn[3].i]
= (regs[insn[1].i]

+ regs[insn[2].i]);
insn += 4;
goto * insn->label;

compiled (x86_64, simplified)
movq 8(%rax), %rsi
movq 16(%rax), %rdx
addq $32, %rax
movq -8(%rax), %rcx
movq -256(%rbp,%rdx,8), %rdx
addq -256(%rbp,%rsi,8), %rdx # +
movq %rdx, -256(%rbp,%rcx,8)
movq (%rax), %rdx
jmpq *rdx

the actual addition costs only one hardware instruction (the
second addq, in black [which also includes one memory access]).
Fallthru to the next VM instruction: three hardware
instructions (increment-load-jump).
The other five hardware instructions only serve to access VM
registers (and on RISCs it’s even worse).

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

28/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) VM add: register indices and shifts

In the C code for VM instructions we access VM register contents
with expressions such as regs[idx], where idx is usually
insn[k].i for some constant k .

Reading insn[k].i into idx costs one load instruction (register
plus a known constant offset). Loading regs[idx] is more
delicate: the address to load from is

regs+ idx · w

where w is the word size in bytes (4 on 32-bit machines, 8 on
64-bit machines). The multiplication requires a separate shift
instruction on most RISC machines [plus possibly yet another instruction
for summing regs and (idx · w): needed on RISC-V, MIPS, Alpha].

Shifting at run time is silly: instead of keeping VM register indices
in the VM program we can keep VM register offsets from regs, or
in other words we can keep pre-shifted register indices.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

28/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) VM add: register indices and shifts

In the C code for VM instructions we access VM register contents
with expressions such as regs[idx], where idx is usually
insn[k].i for some constant k .

Reading insn[k].i into idx costs one load instruction (register
plus a known constant offset). Loading regs[idx] is more
delicate: the address to load from is

regs+ idx · w

where w is the word size in bytes (4 on 32-bit machines, 8 on
64-bit machines). The multiplication requires a separate shift
instruction on most RISC machines [plus possibly yet another instruction
for summing regs and (idx · w): needed on RISC-V, MIPS, Alpha].

Shifting at run time is silly: instead of keeping VM register indices
in the VM program we can keep VM register offsets from regs, or
in other words we can keep pre-shifted register indices.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

28/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) VM add: register indices and shifts

In the C code for VM instructions we access VM register contents
with expressions such as regs[idx], where idx is usually
insn[k].i for some constant k .

Reading insn[k].i into idx costs one load instruction (register
plus a known constant offset). Loading regs[idx] is more
delicate: the address to load from is

regs+ idx · w

where w is the word size in bytes (4 on 32-bit machines, 8 on
64-bit machines). The multiplication requires a separate shift
instruction on most RISC machines [plus possibly yet another instruction
for summing regs and (idx · w): needed on RISC-V, MIPS, Alpha].

Shifting at run time is silly: instead of keeping VM register indices
in the VM program we can keep VM register offsets from regs, or
in other words we can keep pre-shifted register indices.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

28/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) VM add: register indices and shifts

In the C code for VM instructions we access VM register contents
with expressions such as regs[idx], where idx is usually
insn[k].i for some constant k .

Reading insn[k].i into idx costs one load instruction (register
plus a known constant offset). Loading regs[idx] is more
delicate: the address to load from is

regs+ idx · w

where w is the word size in bytes (4 on 32-bit machines, 8 on
64-bit machines). The multiplication requires a separate shift
instruction on most RISC machines [plus possibly yet another instruction
for summing regs and (idx · w): needed on RISC-V, MIPS, Alpha].

Shifting at run time is silly: instead of keeping VM register indices
in the VM program we can keep VM register offsets from regs, or
in other words we can keep pre-shifted register indices.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

29/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) VM add: operation dependency graph

“a→ b” means that a uses the result of b, so b is executed before
a. Thick arrows mean high latencies (∼ 3τ).
[Register index shifts shown, offset sums to regs base not shown]

jump

load target

update insn store VM reg 2

add

load VM reg 0

shift idx 0

load idx 0

load VM reg 1

shift idx 1

load idx 1

shift idx 2

load idx 2

Two long dependency chains, each including two loads:
load←shift←load←add←store. ∼ 6τ latency just from the loads,
with ideal Instruction-Level Parallelism! In practice it will be worse.

slow!
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

29/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) VM add: operation dependency graph

“a→ b” means that a uses the result of b, so b is executed before
a. Thick arrows mean high latencies (∼ 3τ).
[Register index shifts shown, offset sums to regs base not shown]

jump

load target

update insn store VM reg 2

add

load VM reg 0

shift idx 0

load idx 0

load VM reg 1

shift idx 1

load idx 1

shift idx 2

load idx 2

Two long dependency chains, each including two loads:
load←shift←load←add←store. ∼ 6τ latency just from the loads,
with ideal Instruction-Level Parallelism! In practice it will be worse.

slow!
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

29/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) VM add: operation dependency graph

“a→ b” means that a uses the result of b, so b is executed before
a. Thick arrows mean high latencies (∼ 3τ).
[Register index shifts shown, offset sums to regs base not shown]

jump

load target

update insn store VM reg 2

add

load VM reg 0

shift idx 0

load idx 0

load VM reg 1

shift idx 1

load idx 1

shift idx 2

load idx 2

Two long dependency chains, each including two loads:
load←shift←load←add←store. ∼ 6τ latency just from the loads,
with ideal Instruction-Level Parallelism! In practice it will be worse.

slow!
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

29/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) VM add: operation dependency graph

“a→ b” means that a uses the result of b, so b is executed before
a. Thick arrows mean high latencies (∼ 3τ).
[Register index shifts shown, offset sums to regs base not shown]

jump

load target

update insn store VM reg 2

add

load VM reg 0

shift idx 0

load idx 0

load VM reg 1

shift idx 1

load idx 1

shift idx 2

load idx 2

Two long dependency chains, each including two loads:
load←shift←load←add←store. ∼ 6τ latency just from the loads,
with ideal Instruction-Level Parallelism! In practice it will be worse.

slow!
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

30/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) VM b: operation dependency graph

jump

load code pointer

load instr

Longest (and only) dependency chain load←load←jump. A VM
unconditional branch has latency similar to a VM add; a VM b can
easily be faster than a VM add if the hardware branch target
predictor does its job.

VMs and hardware machines can have very different performance
profiles.

[I’ve understood, too late to make the change before the GHM, that this is
optimizable. Can you see how? Hint: b can have two arguments instead of
one, at least in the memory representation of the program.]

not a bottle
neck

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

30/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) VM b: operation dependency graph

jump

load code pointer

load instr

Longest (and only) dependency chain load←load←jump. A VM
unconditional branch has latency similar to a VM add; a VM b can
easily be faster than a VM add if the hardware branch target
predictor does its job.

VMs and hardware machines can have very different performance
profiles.

[I’ve understood, too late to make the change before the GHM, that this is
optimizable. Can you see how? Hint: b can have two arguments instead of
one, at least in the memory representation of the program.]

not a bottle
neck

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

30/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) VM b: operation dependency graph

jump

load code pointer

load instr

Longest (and only) dependency chain load←load←jump. A VM
unconditional branch has latency similar to a VM add; a VM b can
easily be faster than a VM add if the hardware branch target
predictor does its job.

VMs and hardware machines can have very different performance
profiles.

[I’ve understood, too late to make the change before the GHM, that this is
optimizable. Can you see how? Hint: b can have two arguments instead of
one, at least in the memory representation of the program.]

not a bottle
neck

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

30/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) VM b: operation dependency graph

jump

load code pointer

load instr

Longest (and only) dependency chain load←load←jump. A VM
unconditional branch has latency similar to a VM add; a VM b can
easily be faster than a VM add if the hardware branch target
predictor does its job.

VMs and hardware machines can have very different performance
profiles.

[I’ve understood, too late to make the change before the GHM, that this is
optimizable. Can you see how? Hint: b can have two arguments instead of
one, at least in the memory representation of the program.]

not a bottle
neck

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

31/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

What if we used a stack instead of VM registers?

Stack-oriented VM instructions replace the top few elements of a
stack with the result of an operation. For example stack_add
(zero arguments) could pop two elements (say, 5 and 6) from the
stack and push their sum (11). This idea is about using stacks
instead of VM registers, not just call stacks.

The authors of [Shi et al., 2005], in other works as well, argue from
experimental data that direct-threaded register VMs are faster than
direct-threaded stack VMs (same model I’m presenting here, stack
code machine-translated to VM-register code with optimizations).

Unfortunately it’s difficult to replicate their measurements.
I wonder if their results still hold today, with our proportionally
slower L1d caches and better branch predictors. [Still, stack code
takes more instructions to do the same work, today like in 2005]

This is why I have doubts:
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

31/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

What if we used a stack instead of VM registers?

Stack-oriented VM instructions replace the top few elements of a
stack with the result of an operation. For example stack_add
(zero arguments) could pop two elements (say, 5 and 6) from the
stack and push their sum (11). This idea is about using stacks
instead of VM registers, not just call stacks.

The authors of [Shi et al., 2005], in other works as well, argue from
experimental data that direct-threaded register VMs are faster than
direct-threaded stack VMs (same model I’m presenting here, stack
code machine-translated to VM-register code with optimizations).

Unfortunately it’s difficult to replicate their measurements.
I wonder if their results still hold today, with our proportionally
slower L1d caches and better branch predictors. [Still, stack code
takes more instructions to do the same work, today like in 2005]

This is why I have doubts:
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

31/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

What if we used a stack instead of VM registers?

Stack-oriented VM instructions replace the top few elements of a
stack with the result of an operation. For example stack_add
(zero arguments) could pop two elements (say, 5 and 6) from the
stack and push their sum (11). This idea is about using stacks
instead of VM registers, not just call stacks.

The authors of [Shi et al., 2005], in other works as well, argue from
experimental data that direct-threaded register VMs are faster than
direct-threaded stack VMs (same model I’m presenting here, stack
code machine-translated to VM-register code with optimizations).

Unfortunately it’s difficult to replicate their measurements.
I wonder if their results still hold today, with our proportionally
slower L1d caches and better branch predictors. [Still, stack code
takes more instructions to do the same work, today like in 2005]

This is why I have doubts:
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

31/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

What if we used a stack instead of VM registers?

Stack-oriented VM instructions replace the top few elements of a
stack with the result of an operation. For example stack_add
(zero arguments) could pop two elements (say, 5 and 6) from the
stack and push their sum (11). This idea is about using stacks
instead of VM registers, not just call stacks.

The authors of [Shi et al., 2005], in other works as well, argue from
experimental data that direct-threaded register VMs are faster than
direct-threaded stack VMs (same model I’m presenting here, stack
code machine-translated to VM-register code with optimizations).

Unfortunately it’s difficult to replicate their measurements.
I wonder if their results still hold today, with our proportionally
slower L1d caches and better branch predictors. [Still, stack code
takes more instructions to do the same work, today like in 2005]

This is why I have doubts:
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

31/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

What if we used a stack instead of VM registers?

Stack-oriented VM instructions replace the top few elements of a
stack with the result of an operation. For example stack_add
(zero arguments) could pop two elements (say, 5 and 6) from the
stack and push their sum (11). This idea is about using stacks
instead of VM registers, not just call stacks.

The authors of [Shi et al., 2005], in other works as well, argue from
experimental data that direct-threaded register VMs are faster than
direct-threaded stack VMs (same model I’m presenting here, stack
code machine-translated to VM-register code with optimizations).

Unfortunately it’s difficult to replicate their measurements.
I wonder if their results still hold today, with our proportionally
slower L1d caches and better branch predictors. [Still, stack code
takes more instructions to do the same work, today like in 2005]

This is why I have doubts:
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

32/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Naïve stack implementation

Suppose the VM has a stack in a hardware memory array, with a
top-of-stack pointer in a hardware register. This is a zero-argument
stack_add VM instruction:

GNU C
label_stack_add:

top [-1] = top [-1] + top [0];
top --;
/* Fallthru code omitted, same as always. */

Before:

top 5
6

After:

top 5
11

Two (independent) loads, one store. This looks better than our
VM-register add: constant offsets from top, no index/offset loads.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

32/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Naïve stack implementation

Suppose the VM has a stack in a hardware memory array, with a
top-of-stack pointer in a hardware register. This is a zero-argument
stack_add VM instruction:

GNU C
label_stack_add:

top [-1] = top [-1] + top [0];
top --;
/* Fallthru code omitted, same as always. */

Before:

top 5
6

After:

top 5
11

Two (independent) loads, one store. This looks better than our
VM-register add: constant offsets from top, no index/offset loads.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

32/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Naïve stack implementation

Suppose the VM has a stack in a hardware memory array, with a
top-of-stack pointer in a hardware register. This is a zero-argument
stack_add VM instruction:

GNU C
label_stack_add:

top [-1] = top [-1] + top [0];
top --;
/* Fallthru code omitted, same as always. */

Before:

top 5
6

After:

top 5
11

Two (independent) loads, one store. This looks better than our
VM-register add: constant offsets from top, no index/offset loads.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

32/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Naïve stack implementation

Suppose the VM has a stack in a hardware memory array, with a
top-of-stack pointer in a hardware register. This is a zero-argument
stack_add VM instruction:

GNU C
label_stack_add:

top [-1] = top [-1] + top [0];
top --;
/* Fallthru code omitted, same as always. */

Before:

top 5
6

After:

top 5
11

Two (independent) loads, one store. This looks better than our
VM-register add: constant offsets from top, no index/offset loads.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

33/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Top-Of-Stack (TOS) optimization

We can do even better: keep the VM top stack element in a
hardware register (the rest of the stack still in a hardware memory
array), and an under-top pointer in a second hardware register.

GNU C
label_stack_add:

tos += undertop [0];
undertop --;
/* Fallthru code omitted, same as always. */

Before:

tos = 5
undertop 6

After:

tos = 11
undertop 6

Only one load. Other VM instructions working only on the TOS
(for example stack_increment) require zero loads.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

33/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Top-Of-Stack (TOS) optimization

We can do even better: keep the VM top stack element in a
hardware register (the rest of the stack still in a hardware memory
array), and an under-top pointer in a second hardware register.

GNU C
label_stack_add:

tos += undertop [0];
undertop --;
/* Fallthru code omitted, same as always. */

Before:

tos = 5
undertop 6

After:

tos = 11
undertop 6

Only one load. Other VM instructions working only on the TOS
(for example stack_increment) require zero loads.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

33/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Top-Of-Stack (TOS) optimization

We can do even better: keep the VM top stack element in a
hardware register (the rest of the stack still in a hardware memory
array), and an under-top pointer in a second hardware register.

GNU C
label_stack_add:

tos += undertop [0];
undertop --;
/* Fallthru code omitted, same as always. */

Before:

tos = 5
undertop 6

After:

tos = 11
undertop 6

Only one load. Other VM instructions working only on the TOS
(for example stack_increment) require zero loads.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

33/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

Top-Of-Stack (TOS) optimization

We can do even better: keep the VM top stack element in a
hardware register (the rest of the stack still in a hardware memory
array), and an under-top pointer in a second hardware register.

GNU C
label_stack_add:

tos += undertop [0];
undertop --;
/* Fallthru code omitted, same as always. */

Before:

tos = 5
undertop 6

After:

tos = 11
undertop 6

Only one load. Other VM instructions working only on the TOS
(for example stack_increment) require zero loads.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

34/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) TOS-optimized stack_add: operations

This includes the fallthru operations (update insn, load target,
jump).

jump

load target

update insn update upder-top ptr. add

load under-top

Very “flat”-looking graph with short dependency chains (max
length 1). Not many operations.

inter
estin

g

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

34/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) TOS-optimized stack_add: operations

This includes the fallthru operations (update insn, load target,
jump).

jump

load target

update insn update upder-top ptr. add

load under-top

Very “flat”-looking graph with short dependency chains (max
length 1). Not many operations.

inter
estin

g

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

34/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

(Direct-threaded) TOS-optimized stack_add: operations

This includes the fallthru operations (update insn, load target,
jump).

jump

load target

update insn update upder-top ptr. add

load under-top

Very “flat”-looking graph with short dependency chains (max
length 1). Not many operations.

inter
estin

g

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

35/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

You’ve seen what every simple VMs does. . .

Nothing of what you saw up to here is new except for the removal
of register index shifts, a minor optimization.

I want to make my VMs faster. In order of priority I need to:
optimize VM register (and immediate argument) access [new]

optimize fallthru [I learned the idea from [Ertl and Gregg, 2004], which
builds upon previous work]

remove insn and the VM program in memory [conceputally easy]

optimize VM branches [my technique is new]

I want zero overhead in the common cases.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

35/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

You’ve seen what every simple VMs does. . .

Nothing of what you saw up to here is new except for the removal
of register index shifts, a minor optimization.

I want to make my VMs faster. In order of priority I need to:
optimize VM register (and immediate argument) access [new]

optimize fallthru [I learned the idea from [Ertl and Gregg, 2004], which
builds upon previous work]

remove insn and the VM program in memory [conceputally easy]

optimize VM branches [my technique is new]

I want zero overhead in the common cases.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

35/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

You’ve seen what every simple VMs does. . .

Nothing of what you saw up to here is new except for the removal
of register index shifts, a minor optimization.

I want to make my VMs faster. In order of priority I need to:
optimize VM register (and immediate argument) access [new]

optimize fallthru [I learned the idea from [Ertl and Gregg, 2004], which
builds upon previous work]

remove insn and the VM program in memory [conceputally easy]

optimize VM branches [my technique is new]

I want zero overhead in the common cases.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

35/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

You’ve seen what every simple VMs does. . .

Nothing of what you saw up to here is new except for the removal
of register index shifts, a minor optimization.

I want to make my VMs faster. In order of priority I need to:
optimize VM register (and immediate argument) access [new]

optimize fallthru [I learned the idea from [Ertl and Gregg, 2004], which
builds upon previous work]

remove insn and the VM program in memory [conceputally easy]

optimize VM branches [my technique is new]

I want zero overhead in the common cases.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

35/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

You’ve seen what every simple VMs does. . .

Nothing of what you saw up to here is new except for the removal
of register index shifts, a minor optimization.

I want to make my VMs faster. In order of priority I need to:
optimize VM register (and immediate argument) access [new]

optimize fallthru [I learned the idea from [Ertl and Gregg, 2004], which
builds upon previous work]

remove insn and the VM program in memory [conceputally easy]

optimize VM branches [my technique is new]

I want zero overhead in the common cases.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

35/71 .

Basics Specialization Replication No-threading Closing Example AST Linear switch Threading Args Stacks

You’ve seen what every simple VMs does. . .

Nothing of what you saw up to here is new except for the removal
of register index shifts, a minor optimization.

I want to make my VMs faster. In order of priority I need to:
optimize VM register (and immediate argument) access [new]

optimize fallthru [I learned the idea from [Ertl and Gregg, 2004], which
builds upon previous work]

remove insn and the VM program in memory [conceputally easy]

optimize VM branches [my technique is new]

I want zero overhead in the common cases.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

36/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Optimizing VM register access

VM registers should not be in hardware memory.
I want them in hardware registers (as long as they fit).

The problem: every time I do anything with

regs[e]

and the value of e isn’t known at compile time I lose. GCC can’t
put any regs element in a specific hardware register, while there is
even one regs[e] expression with unknown e — reading or
writing.

The solution: never use regs[e] with a non-constant e; or even
split regs into scalar variables reg_0, reg_1, reg_2, . . . and never
take the address of those variables: writing “& regs_i” is forbidden
for every i .

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

36/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Optimizing VM register access

VM registers should not be in hardware memory.
I want them in hardware registers (as long as they fit).

The problem: every time I do anything with

regs[e]

and the value of e isn’t known at compile time I lose. GCC can’t
put any regs element in a specific hardware register, while there is
even one regs[e] expression with unknown e — reading or
writing.

The solution: never use regs[e] with a non-constant e; or even
split regs into scalar variables reg_0, reg_1, reg_2, . . . and never
take the address of those variables: writing “& regs_i” is forbidden
for every i .

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

36/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Optimizing VM register access

VM registers should not be in hardware memory.
I want them in hardware registers (as long as they fit).

The problem: every time I do anything with

regs[e]

and the value of e isn’t known at compile time I lose. GCC can’t
put any regs element in a specific hardware register, while there is
even one regs[e] expression with unknown e — reading or
writing.

The solution: never use regs[e] with a non-constant e; or even
split regs into scalar variables reg_0, reg_1, reg_2, . . . and never
take the address of those variables: writing “& regs_i” is forbidden
for every i .

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

37/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Let’s look at a VM instruction such as add

[Here with register indices rather than offsets, just for simplicity: same point]

GNU C
label_add:

regs[insn[3].i] = regs[insn[1].i] + regs[insn[2].i];
insn += 4;
goto * insn->label;

Here regs is (always) indexed with insn[k].i, an index coming
from the interpreted program!

And this pattern is very common across VM instructions.

No hope with this VM instruction code.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

37/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Let’s look at a VM instruction such as add

[Here with register indices rather than offsets, just for simplicity: same point]

GNU C
label_add:

regs[insn[3].i] = regs[insn[1].i] + regs[insn[2].i];
insn += 4;
goto * insn->label;

Here regs is (always) indexed with insn[k].i, an index coming
from the interpreted program!

And this pattern is very common across VM instructions.

No hope with this VM instruction code.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

37/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Let’s look at a VM instruction such as add

[Here with register indices rather than offsets, just for simplicity: same point]

GNU C
label_add:

regs[insn[3].i] = regs[insn[1].i] + regs[insn[2].i];
insn += 4;
goto * insn->label;

Here regs is (always) indexed with insn[k].i, an index coming
from the interpreted program!

And this pattern is very common across VM instructions.

No hope with this VM instruction code.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

37/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Let’s look at a VM instruction such as add

[Here with register indices rather than offsets, just for simplicity: same point]

GNU C
label_add:

regs[insn[3].i] = regs[insn[1].i] + regs[insn[2].i];
insn += 4;
goto * insn->label;

Here regs is (always) indexed with insn[k].i, an index coming
from the interpreted program!

And this pattern is very common across VM instructions.

No hope with this VM instruction code.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

38/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

VM instruction specialization

A radical solution: forbid register indices/offsets as VM instruction
arguments.

Remove the VM instruction add taking three index/offsets
arguments from the interpreter. Instead there will be many
specialized VM instructions:

add/%r0/%r0/%r0,
add/%r0/%r0/%r1,
add/%r0/%r1/%r0,
add/%r0/%r1/%r1, . . .
add/%r1/%r1/%r1,
add/%r0/%r0/%r2, . . . Every possible combination.

Specialized instructions have no register-index/offset arguments;
the specializations of our example’s add have all zero arguments.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

38/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

VM instruction specialization

A radical solution: forbid register indices/offsets as VM instruction
arguments.

Remove the VM instruction add taking three index/offsets
arguments from the interpreter. Instead there will be many
specialized VM instructions:

add/%r0/%r0/%r0,
add/%r0/%r0/%r1,
add/%r0/%r1/%r0,
add/%r0/%r1/%r1, . . .
add/%r1/%r1/%r1,
add/%r0/%r0/%r2, . . . Every possible combination.

Specialized instructions have no register-index/offset arguments;
the specializations of our example’s add have all zero arguments.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

38/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

VM instruction specialization

A radical solution: forbid register indices/offsets as VM instruction
arguments.

Remove the VM instruction add taking three index/offsets
arguments from the interpreter. Instead there will be many
specialized VM instructions:

add/%r0/%r0/%r0,
add/%r0/%r0/%r1,
add/%r0/%r1/%r0,
add/%r0/%r1/%r1, . . .
add/%r1/%r1/%r1,
add/%r0/%r0/%r2, . . . Every possible combination.

Specialized instructions have no register-index/offset arguments;
the specializations of our example’s add have all zero arguments.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

39/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Bear with me

Yes, I know that you have objections at this point.

Please give me one minute. I will address them.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

40/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Where am I going?

Specialization is not manageable in human-written code:
very long and redundant code
fragile with respect to trivial details [how many programs slot
to skip for fallthru? The number depends on how many
arguments are VM registers]

The solution is machine-generating C code.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

40/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Where am I going?

Specialization is not manageable in human-written code:
very long and redundant code
fragile with respect to trivial details [how many programs slot
to skip for fallthru? The number depends on how many
arguments are VM registers]

The solution is machine-generating C code.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

40/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Where am I going?

Specialization is not manageable in human-written code:
very long and redundant code
fragile with respect to trivial details [how many programs slot
to skip for fallthru? The number depends on how many
arguments are VM registers]

The solution is machine-generating C code.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

41/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

The project takes shape

The new software I’m presenting is a code generator, automatically
emitting C code for a VM from a human-written specification. Like
Bison, and even more like Vmgen [Ertl et al., 2002], [Ertl, 2008].

user-provided C code snippets for each unspecialized
instruction
convenient automatically-defined CPP macros to refer to
(pre-specialization) arguments, and more
fallthru code implicit for every VM instruction, automatically
added by the generator

A VM instruction specification from the “Uninspired” VM (edited)
instruction add (?R, ?R, !R)

code
UNINSPIRED_ARGN2 = UNINSPIRED_ARGN0 + UNINSPIRED_ARGN1;

end
end

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

41/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

The project takes shape

The new software I’m presenting is a code generator, automatically
emitting C code for a VM from a human-written specification. Like
Bison, and even more like Vmgen [Ertl et al., 2002], [Ertl, 2008].

user-provided C code snippets for each unspecialized
instruction
convenient automatically-defined CPP macros to refer to
(pre-specialization) arguments, and more
fallthru code implicit for every VM instruction, automatically
added by the generator

A VM instruction specification from the “Uninspired” VM (edited)
instruction add (?R, ?R, !R)

code
UNINSPIRED_ARGN2 = UNINSPIRED_ARGN0 + UNINSPIRED_ARGN1;

end
end

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

41/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

The project takes shape

The new software I’m presenting is a code generator, automatically
emitting C code for a VM from a human-written specification. Like
Bison, and even more like Vmgen [Ertl et al., 2002], [Ertl, 2008].

user-provided C code snippets for each unspecialized
instruction
convenient automatically-defined CPP macros to refer to
(pre-specialization) arguments, and more
fallthru code implicit for every VM instruction, automatically
added by the generator

A VM instruction specification from the “Uninspired” VM (edited)
instruction add (?R, ?R, !R)

code
UNINSPIRED_ARGN2 = UNINSPIRED_ARGN0 + UNINSPIRED_ARGN1;

end
end

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

41/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

The project takes shape

The new software I’m presenting is a code generator, automatically
emitting C code for a VM from a human-written specification. Like
Bison, and even more like Vmgen [Ertl et al., 2002], [Ertl, 2008].

user-provided C code snippets for each unspecialized
instruction
convenient automatically-defined CPP macros to refer to
(pre-specialization) arguments, and more
fallthru code implicit for every VM instruction, automatically
added by the generator

A VM instruction specification from the “Uninspired” VM (edited)
instruction add (?R, ?R, !R)

code
UNINSPIRED_ARGN2 = UNINSPIRED_ARGN0 + UNINSPIRED_ARGN1;

end
end

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

41/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

The project takes shape

The new software I’m presenting is a code generator, automatically
emitting C code for a VM from a human-written specification. Like
Bison, and even more like Vmgen [Ertl et al., 2002], [Ertl, 2008].

user-provided C code snippets for each unspecialized
instruction
convenient automatically-defined CPP macros to refer to
(pre-specialization) arguments, and more
fallthru code implicit for every VM instruction, automatically
added by the generator

A VM instruction specification from the “Uninspired” VM (edited)
instruction add (?R, ?R, !R)

code
UNINSPIRED_ARGN2 = UNINSPIRED_ARGN0 + UNINSPIRED_ARGN1;

end
end

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

42/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated C code: general

Making VMs general:
VM registers, or stacks (TOS-optimized or not), both,
anything else implemented by the user
user-specified data types (register classes: for example
integer/pointer, floating point, vector, . . .)
several possible dispatching models

switch-dispatching, direct threading, other models I’ll show
later;

different performance profiles, identical behavior!
lots of #ifdefs in the generated C code; choose dispatching
model by compiling with -DDIRECT_THREADING, . . .

include custom C code from the user
compatible with multi-threading and garbage collection,
including exact pointer-finding [not just conservative as in Hans
Bohem’s GC]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

42/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated C code: general

Making VMs general:
VM registers, or stacks (TOS-optimized or not), both,
anything else implemented by the user
user-specified data types (register classes: for example
integer/pointer, floating point, vector, . . .)
several possible dispatching models

switch-dispatching, direct threading, other models I’ll show
later;

different performance profiles, identical behavior!
lots of #ifdefs in the generated C code; choose dispatching
model by compiling with -DDIRECT_THREADING, . . .

include custom C code from the user
compatible with multi-threading and garbage collection,
including exact pointer-finding [not just conservative as in Hans
Bohem’s GC]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

42/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated C code: general

Making VMs general:
VM registers, or stacks (TOS-optimized or not), both,
anything else implemented by the user
user-specified data types (register classes: for example
integer/pointer, floating point, vector, . . .)
several possible dispatching models

switch-dispatching, direct threading, other models I’ll show
later;

different performance profiles, identical behavior!
lots of #ifdefs in the generated C code; choose dispatching
model by compiling with -DDIRECT_THREADING, . . .

include custom C code from the user
compatible with multi-threading and garbage collection,
including exact pointer-finding [not just conservative as in Hans
Bohem’s GC]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

42/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated C code: general

Making VMs general:
VM registers, or stacks (TOS-optimized or not), both,
anything else implemented by the user
user-specified data types (register classes: for example
integer/pointer, floating point, vector, . . .)
several possible dispatching models

switch-dispatching, direct threading, other models I’ll show
later;

different performance profiles, identical behavior!
lots of #ifdefs in the generated C code; choose dispatching
model by compiling with -DDIRECT_THREADING, . . .

include custom C code from the user
compatible with multi-threading and garbage collection,
including exact pointer-finding [not just conservative as in Hans
Bohem’s GC]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

42/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated C code: general

Making VMs general:
VM registers, or stacks (TOS-optimized or not), both,
anything else implemented by the user
user-specified data types (register classes: for example
integer/pointer, floating point, vector, . . .)
several possible dispatching models

switch-dispatching, direct threading, other models I’ll show
later;

different performance profiles, identical behavior!
lots of #ifdefs in the generated C code; choose dispatching
model by compiling with -DDIRECT_THREADING, . . .

include custom C code from the user
compatible with multi-threading and garbage collection,
including exact pointer-finding [not just conservative as in Hans
Bohem’s GC]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

43/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated C code: portable

Making VMs portable with respect to different CPU architectures
(also important for political reasons: free hardware as a prerequisite
for privacy)

Using C with as little assembly as possible, and not in user
code (the assembly part is VM-independent, and already
provided)
even that little assembly is optional, only for better
performance

VMs behave identically, with or without assembly support
direct threading with specialization is as portable as GCC
switch-dispatching even more portable (no goto *) (not yet
implemented, but trivial)

compiled VMs work comfortably even on “small” machines
(32MB RAM is plenty; probably 8 or even 4MB is enough)

(Compiling VMs is heavier, as you have guessed already)

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

43/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated C code: portable

Making VMs portable with respect to different CPU architectures
(also important for political reasons: free hardware as a prerequisite
for privacy)

Using C with as little assembly as possible, and not in user
code (the assembly part is VM-independent, and already
provided)
even that little assembly is optional, only for better
performance

VMs behave identically, with or without assembly support
direct threading with specialization is as portable as GCC
switch-dispatching even more portable (no goto *) (not yet
implemented, but trivial)

compiled VMs work comfortably even on “small” machines
(32MB RAM is plenty; probably 8 or even 4MB is enough)

(Compiling VMs is heavier, as you have guessed already)

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

43/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated C code: portable

Making VMs portable with respect to different CPU architectures
(also important for political reasons: free hardware as a prerequisite
for privacy)

Using C with as little assembly as possible, and not in user
code (the assembly part is VM-independent, and already
provided)
even that little assembly is optional, only for better
performance

VMs behave identically, with or without assembly support
direct threading with specialization is as portable as GCC
switch-dispatching even more portable (no goto *) (not yet
implemented, but trivial)

compiled VMs work comfortably even on “small” machines
(32MB RAM is plenty; probably 8 or even 4MB is enough)

(Compiling VMs is heavier, as you have guessed already)

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

43/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated C code: portable

Making VMs portable with respect to different CPU architectures
(also important for political reasons: free hardware as a prerequisite
for privacy)

Using C with as little assembly as possible, and not in user
code (the assembly part is VM-independent, and already
provided)
even that little assembly is optional, only for better
performance

VMs behave identically, with or without assembly support
direct threading with specialization is as portable as GCC
switch-dispatching even more portable (no goto *) (not yet
implemented, but trivial)

compiled VMs work comfortably even on “small” machines
(32MB RAM is plenty; probably 8 or even 4MB is enough)

(Compiling VMs is heavier, as you have guessed already)

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

43/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated C code: portable

Making VMs portable with respect to different CPU architectures
(also important for political reasons: free hardware as a prerequisite
for privacy)

Using C with as little assembly as possible, and not in user
code (the assembly part is VM-independent, and already
provided)
even that little assembly is optional, only for better
performance

VMs behave identically, with or without assembly support
direct threading with specialization is as portable as GCC
switch-dispatching even more portable (no goto *) (not yet
implemented, but trivial)

compiled VMs work comfortably even on “small” machines
(32MB RAM is plenty; probably 8 or even 4MB is enough)

(Compiling VMs is heavier, as you have guessed already)

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

43/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated C code: portable

Making VMs portable with respect to different CPU architectures
(also important for political reasons: free hardware as a prerequisite
for privacy)

Using C with as little assembly as possible, and not in user
code (the assembly part is VM-independent, and already
provided)
even that little assembly is optional, only for better
performance

VMs behave identically, with or without assembly support
direct threading with specialization is as portable as GCC
switch-dispatching even more portable (no goto *) (not yet
implemented, but trivial)

compiled VMs work comfortably even on “small” machines
(32MB RAM is plenty; probably 8 or even 4MB is enough)

(Compiling VMs is heavier, as you have guessed already)

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

43/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated C code: portable

Making VMs portable with respect to different CPU architectures
(also important for political reasons: free hardware as a prerequisite
for privacy)

Using C with as little assembly as possible, and not in user
code (the assembly part is VM-independent, and already
provided)
even that little assembly is optional, only for better
performance

VMs behave identically, with or without assembly support
direct threading with specialization is as portable as GCC
switch-dispatching even more portable (no goto *) (not yet
implemented, but trivial)

compiled VMs work comfortably even on “small” machines
(32MB RAM is plenty; probably 8 or even 4MB is enough)

(Compiling VMs is heavier, as you have guessed already)

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

43/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated C code: portable

Making VMs portable with respect to different CPU architectures
(also important for political reasons: free hardware as a prerequisite
for privacy)

Using C with as little assembly as possible, and not in user
code (the assembly part is VM-independent, and already
provided)
even that little assembly is optional, only for better
performance

VMs behave identically, with or without assembly support
direct threading with specialization is as portable as GCC
switch-dispatching even more portable (no goto *) (not yet
implemented, but trivial)

compiled VMs work comfortably even on “small” machines
(32MB RAM is plenty; probably 8 or even 4MB is enough)

(Compiling VMs is heavier, as you have guessed already)

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

44/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated-code goodies

Along with the generated code you get:
C API for dynamically generating and executing VM programs
from your application
driver with command-line options (main with convenient GNU
command-line support for debugging and benchmarking)
frontend: VM program parser and printer
cross-compilation support
disassembly to native or (via qemu-user) cross- code
testsuite (even cross-, via qemu-user)

If you want to generate a direct-threaded VM of the kind many
projects already use (Emacs, Guile, . . .), it’s trivial. But getting a
much more efficient VM is not any more difficult.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

44/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated-code goodies

Along with the generated code you get:
C API for dynamically generating and executing VM programs
from your application
driver with command-line options (main with convenient GNU
command-line support for debugging and benchmarking)
frontend: VM program parser and printer
cross-compilation support
disassembly to native or (via qemu-user) cross- code
testsuite (even cross-, via qemu-user)

If you want to generate a direct-threaded VM of the kind many
projects already use (Emacs, Guile, . . .), it’s trivial. But getting a
much more efficient VM is not any more difficult.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

44/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated-code goodies

Along with the generated code you get:
C API for dynamically generating and executing VM programs
from your application
driver with command-line options (main with convenient GNU
command-line support for debugging and benchmarking)
frontend: VM program parser and printer
cross-compilation support
disassembly to native or (via qemu-user) cross- code
testsuite (even cross-, via qemu-user)

If you want to generate a direct-threaded VM of the kind many
projects already use (Emacs, Guile, . . .), it’s trivial. But getting a
much more efficient VM is not any more difficult.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

44/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated-code goodies

Along with the generated code you get:
C API for dynamically generating and executing VM programs
from your application
driver with command-line options (main with convenient GNU
command-line support for debugging and benchmarking)
frontend: VM program parser and printer
cross-compilation support
disassembly to native or (via qemu-user) cross- code
testsuite (even cross-, via qemu-user)

If you want to generate a direct-threaded VM of the kind many
projects already use (Emacs, Guile, . . .), it’s trivial. But getting a
much more efficient VM is not any more difficult.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

44/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated-code goodies

Along with the generated code you get:
C API for dynamically generating and executing VM programs
from your application
driver with command-line options (main with convenient GNU
command-line support for debugging and benchmarking)
frontend: VM program parser and printer
cross-compilation support
disassembly to native or (via qemu-user) cross- code
testsuite (even cross-, via qemu-user)

If you want to generate a direct-threaded VM of the kind many
projects already use (Emacs, Guile, . . .), it’s trivial. But getting a
much more efficient VM is not any more difficult.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

44/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated-code goodies

Along with the generated code you get:
C API for dynamically generating and executing VM programs
from your application
driver with command-line options (main with convenient GNU
command-line support for debugging and benchmarking)
frontend: VM program parser and printer
cross-compilation support
disassembly to native or (via qemu-user) cross- code
testsuite (even cross-, via qemu-user)

If you want to generate a direct-threaded VM of the kind many
projects already use (Emacs, Guile, . . .), it’s trivial. But getting a
much more efficient VM is not any more difficult.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

44/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated-code goodies

Along with the generated code you get:
C API for dynamically generating and executing VM programs
from your application
driver with command-line options (main with convenient GNU
command-line support for debugging and benchmarking)
frontend: VM program parser and printer
cross-compilation support
disassembly to native or (via qemu-user) cross- code
testsuite (even cross-, via qemu-user)

If you want to generate a direct-threaded VM of the kind many
projects already use (Emacs, Guile, . . .), it’s trivial. But getting a
much more efficient VM is not any more difficult.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

44/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Generated-code goodies

Along with the generated code you get:
C API for dynamically generating and executing VM programs
from your application
driver with command-line options (main with convenient GNU
command-line support for debugging and benchmarking)
frontend: VM program parser and printer
cross-compilation support
disassembly to native or (via qemu-user) cross- code
testsuite (even cross-, via qemu-user)

If you want to generate a direct-threaded VM of the kind many
projects already use (Emacs, Guile, . . .), it’s trivial. But getting a
much more efficient VM is not any more difficult.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

45/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

VM specialized instructions: combinatorial explosion?

If we have n registers and m instructions (for example) all taking 3
register indices as arguments, specialized instructions are m · n3.

Yes, there are practical limits on how many VM registers of this
kind you can have.

There are ways to reduce this growth and some optimizations I
haven’t implemented yet, but compiling a machine-generated VM is
heavy. GCC can use GBs of RAM and take minutes to run when
VM registers are many.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

45/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

VM specialized instructions: combinatorial explosion?

If we have n registers and m instructions (for example) all taking 3
register indices as arguments, specialized instructions are m · n3.

Yes, there are practical limits on how many VM registers of this
kind you can have.

There are ways to reduce this growth and some optimizations I
haven’t implemented yet, but compiling a machine-generated VM is
heavy. GCC can use GBs of RAM and take minutes to run when
VM registers are many.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

46/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Limiting combinatorial explosion

Some specialized instructions are useless or can be normalized:
For example, addition is commutative: add/%r0/%r1/%r2 and
add/%r1/%r0/%r2 do the same work, and we can keep only
one. This halves the number of (commutative) specialized
instructions.
We can also rewrite every specialized instruction such as

add/%ri/%rj/%rk
into a two-specialized-instruction sequence

copy/%rj/%rk
add/%ri/%rk/%rk

whenever j 6= k . [This is correct because add writes its third
argument, but doesn’t read it.] This rewrite can cut the
number of specialized instructions from m · n3 to m · n2.

Every specialized instruction which is not a rewrite target “doesn’t
exist”.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

46/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Limiting combinatorial explosion

Some specialized instructions are useless or can be normalized:
For example, addition is commutative: add/%r0/%r1/%r2 and
add/%r1/%r0/%r2 do the same work, and we can keep only
one. This halves the number of (commutative) specialized
instructions.
We can also rewrite every specialized instruction such as

add/%ri/%rj/%rk
into a two-specialized-instruction sequence

copy/%rj/%rk
add/%ri/%rk/%rk

whenever j 6= k . [This is correct because add writes its third
argument, but doesn’t read it.] This rewrite can cut the
number of specialized instructions from m · n3 to m · n2.

Every specialized instruction which is not a rewrite target “doesn’t
exist”.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

46/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Limiting combinatorial explosion

Some specialized instructions are useless or can be normalized:
For example, addition is commutative: add/%r0/%r1/%r2 and
add/%r1/%r0/%r2 do the same work, and we can keep only
one. This halves the number of (commutative) specialized
instructions.
We can also rewrite every specialized instruction such as

add/%ri/%rj/%rk
into a two-specialized-instruction sequence

copy/%rj/%rk
add/%ri/%rk/%rk

whenever j 6= k . [This is correct because add writes its third
argument, but doesn’t read it.] This rewrite can cut the
number of specialized instructions from m · n3 to m · n2.

Every specialized instruction which is not a rewrite target “doesn’t
exist”.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

46/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Limiting combinatorial explosion

Some specialized instructions are useless or can be normalized:
For example, addition is commutative: add/%r0/%r1/%r2 and
add/%r1/%r0/%r2 do the same work, and we can keep only
one. This halves the number of (commutative) specialized
instructions.
We can also rewrite every specialized instruction such as

add/%ri/%rj/%rk
into a two-specialized-instruction sequence

copy/%rj/%rk
add/%ri/%rk/%rk

whenever j 6= k . [This is correct because add writes its third
argument, but doesn’t read it.] This rewrite can cut the
number of specialized instructions from m · n3 to m · n2.

Every specialized instruction which is not a rewrite target “doesn’t
exist”.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

47/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Limiting combinatorial explosion: rewriting

What I’ve outlined can be expressed as a rewriting system.

Which rewrites are valid depends on the properties of each specific
instruction: such properties must be declared by the user in her VM
specification, and cannot in general be inferred.

I’ve not fully implemented rewriting yet, even if the parser
recognizes a preliminary syntax. I want a rule-based system which
is expressive enough to limit growth, and also to perform a few
optimizations in the VM program [for this reason I will implement
rewriting on unspecialized VM instructions]

Some manual tests have convinced me that with fewer useless VM
instructions GCC will do a better job of allocating registers for
those which remain. Implementing rewriting is high-priority.
[GCC register allocation gets worse with many VM registers, on most but not
all architectures. Is there a GCC expert I can talk to here?]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

47/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Limiting combinatorial explosion: rewriting

What I’ve outlined can be expressed as a rewriting system.

Which rewrites are valid depends on the properties of each specific
instruction: such properties must be declared by the user in her VM
specification, and cannot in general be inferred.

I’ve not fully implemented rewriting yet, even if the parser
recognizes a preliminary syntax. I want a rule-based system which
is expressive enough to limit growth, and also to perform a few
optimizations in the VM program [for this reason I will implement
rewriting on unspecialized VM instructions]

Some manual tests have convinced me that with fewer useless VM
instructions GCC will do a better job of allocating registers for
those which remain. Implementing rewriting is high-priority.
[GCC register allocation gets worse with many VM registers, on most but not
all architectures. Is there a GCC expert I can talk to here?]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

47/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Limiting combinatorial explosion: rewriting

What I’ve outlined can be expressed as a rewriting system.

Which rewrites are valid depends on the properties of each specific
instruction: such properties must be declared by the user in her VM
specification, and cannot in general be inferred.

I’ve not fully implemented rewriting yet, even if the parser
recognizes a preliminary syntax. I want a rule-based system which
is expressive enough to limit growth, and also to perform a few
optimizations in the VM program [for this reason I will implement
rewriting on unspecialized VM instructions]

Some manual tests have convinced me that with fewer useless VM
instructions GCC will do a better job of allocating registers for
those which remain. Implementing rewriting is high-priority.
[GCC register allocation gets worse with many VM registers, on most but not
all architectures. Is there a GCC expert I can talk to here?]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

47/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Limiting combinatorial explosion: rewriting

What I’ve outlined can be expressed as a rewriting system.

Which rewrites are valid depends on the properties of each specific
instruction: such properties must be declared by the user in her VM
specification, and cannot in general be inferred.

I’ve not fully implemented rewriting yet, even if the parser
recognizes a preliminary syntax. I want a rule-based system which
is expressive enough to limit growth, and also to perform a few
optimizations in the VM program [for this reason I will implement
rewriting on unspecialized VM instructions]

Some manual tests have convinced me that with fewer useless VM
instructions GCC will do a better job of allocating registers for
those which remain. Implementing rewriting is high-priority.
[GCC register allocation gets worse with many VM registers, on most but not
all architectures. Is there a GCC expert I can talk to here?]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

48/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Combinatorial explosion and stack-based instructions

Do we have the same combinatorial explosion problem with
stack-based instruction?

No. The unspecialized VM instruction add_stack has zero
arguments, and only one specialization.

More in general implied operands limit combinatorial explosion,
even with registers. Example: special-purpose registers: mul
and div could always write to the same destination register . . .

Rewrite rules are an easy and powerful way of optimizing stack
code.
Example:

stack_push 10
stack_plus

→
stack_plusi 10

We’ll see how effective this is after I implement rewriting.
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

48/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Combinatorial explosion and stack-based instructions

Do we have the same combinatorial explosion problem with
stack-based instruction?

No. The unspecialized VM instruction add_stack has zero
arguments, and only one specialization.

More in general implied operands limit combinatorial explosion,
even with registers. Example: special-purpose registers: mul
and div could always write to the same destination register . . .

Rewrite rules are an easy and powerful way of optimizing stack
code.
Example:

stack_push 10
stack_plus

→
stack_plusi 10

We’ll see how effective this is after I implement rewriting.
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

48/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Combinatorial explosion and stack-based instructions

Do we have the same combinatorial explosion problem with
stack-based instruction?

No. The unspecialized VM instruction add_stack has zero
arguments, and only one specialization.

More in general implied operands limit combinatorial explosion,
even with registers. Example: special-purpose registers: mul
and div could always write to the same destination register . . .

Rewrite rules are an easy and powerful way of optimizing stack
code.
Example:

stack_push 10
stack_plus

→
stack_plusi 10

We’ll see how effective this is after I implement rewriting.
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

48/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Combinatorial explosion and stack-based instructions

Do we have the same combinatorial explosion problem with
stack-based instruction?

No. The unspecialized VM instruction add_stack has zero
arguments, and only one specialization.

More in general implied operands limit combinatorial explosion,
even with registers. Example: special-purpose registers: mul
and div could always write to the same destination register . . .

Rewrite rules are an easy and powerful way of optimizing stack
code.
Example:

stack_push 10
stack_plus

→
stack_plusi 10

We’ll see how effective this is after I implement rewriting.
Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

49/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Is VM specialization worth the trouble?

Remove every access to regs with a non-constant index from the
interpreter. Then:

(Macro-expanded) GNU C
label_add_r0_r1_r1:

regs[1] = regs[0] + regs[1];
insn ++; // skip code ptr. only
goto * insn->label;

Now regs indices are constants
(different in every specialization):

compiled (x86_64)
addq $8, %rax
addq %rbx, %rcx
jmpq *(%rax) # Jump via memory

Much better than the
unspecialized version!

Here GCC has kept the VM register %r0 in the hardware register
%rbx and the VM register %r1 in the hardware register %rcx.

[When there aren’t enough hardware machine registers GCC will
allocate some VM registers on the C stack, at a known offset from
the C stack/frame pointer: still faster than without specialization.]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

49/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Is VM specialization worth the trouble?

Remove every access to regs with a non-constant index from the
interpreter. Then:

(Macro-expanded) GNU C
label_add_r0_r1_r1:

regs[1] = regs[0] + regs[1];
insn ++; // skip code ptr. only
goto * insn->label;

Now regs indices are constants
(different in every specialization):

compiled (x86_64)
addq $8, %rax
addq %rbx, %rcx
jmpq *(%rax) # Jump via memory

Much better than the
unspecialized version!

Here GCC has kept the VM register %r0 in the hardware register
%rbx and the VM register %r1 in the hardware register %rcx.

[When there aren’t enough hardware machine registers GCC will
allocate some VM registers on the C stack, at a known offset from
the C stack/frame pointer: still faster than without specialization.]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

49/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Is VM specialization worth the trouble?

Remove every access to regs with a non-constant index from the
interpreter. Then:

(Macro-expanded) GNU C
label_add_r0_r1_r1:

regs[1] = regs[0] + regs[1];
insn ++; // skip code ptr. only
goto * insn->label;

Now regs indices are constants
(different in every specialization):

compiled (x86_64)
addq $8, %rax
addq %rbx, %rcx
jmpq *(%rax) # Jump via memory

Much better than the
unspecialized version!

Here GCC has kept the VM register %r0 in the hardware register
%rbx and the VM register %r1 in the hardware register %rcx.

[When there aren’t enough hardware machine registers GCC will
allocate some VM registers on the C stack, at a known offset from
the C stack/frame pointer: still faster than without specialization.]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

49/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Is VM specialization worth the trouble?

Remove every access to regs with a non-constant index from the
interpreter. Then:

(Macro-expanded) GNU C
label_add_r0_r1_r1:

regs[1] = regs[0] + regs[1];
insn ++; // skip code ptr. only
goto * insn->label;

Now regs indices are constants
(different in every specialization):

compiled (x86_64)
addq $8, %rax
addq %rbx, %rcx
jmpq *(%rax) # Jump via memory

Much better than the
unspecialized version!

Here GCC has kept the VM register %r0 in the hardware register
%rbx and the VM register %r1 in the hardware register %rcx.

[When there aren’t enough hardware machine registers GCC will
allocate some VM registers on the C stack, at a known offset from
the C stack/frame pointer: still faster than without specialization.]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

50/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

More on specialization: slow VM registers

There’s a limit to the number of VM registers we can use for
generating specialized instruction. However, for convenience and
expressiveness, we can also, optionally, provide an unlimited number
of additional VM registers, less efficient to access.

We call the VM registers on which we specialize fast registers, and
the others slow registers. Slow registers are implemented as a
(separate) array in hardware memory, exactly like pre-specialization
VM registers, pointed by slow_regs.

The distinction between fast and slow registers is transparent:

A VM instruction specification from the “Uninspired” VM (edited)
instruction add (?R, ?R, !R) # Each ‘R’ can be fast or slow

code
UNINSPIRED_ARGN2 = UNINSPIRED_ARGN0 + UNINSPIRED_ARGN1;

end
end

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

50/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

More on specialization: slow VM registers

There’s a limit to the number of VM registers we can use for
generating specialized instruction. However, for convenience and
expressiveness, we can also, optionally, provide an unlimited number
of additional VM registers, less efficient to access.

We call the VM registers on which we specialize fast registers, and
the others slow registers. Slow registers are implemented as a
(separate) array in hardware memory, exactly like pre-specialization
VM registers, pointed by slow_regs.

The distinction between fast and slow registers is transparent:

A VM instruction specification from the “Uninspired” VM (edited)
instruction add (?R, ?R, !R) # Each ‘R’ can be fast or slow

code
UNINSPIRED_ARGN2 = UNINSPIRED_ARGN0 + UNINSPIRED_ARGN1;

end
end

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

50/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

More on specialization: slow VM registers

There’s a limit to the number of VM registers we can use for
generating specialized instruction. However, for convenience and
expressiveness, we can also, optionally, provide an unlimited number
of additional VM registers, less efficient to access.

We call the VM registers on which we specialize fast registers, and
the others slow registers. Slow registers are implemented as a
(separate) array in hardware memory, exactly like pre-specialization
VM registers, pointed by slow_regs.

The distinction between fast and slow registers is transparent:

A VM instruction specification from the “Uninspired” VM (edited)
instruction add (?R, ?R, !R) # Each ‘R’ can be fast or slow

code
UNINSPIRED_ARGN2 = UNINSPIRED_ARGN0 + UNINSPIRED_ARGN1;

end
end

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

51/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Slow VM registers: generated code expansion

The same VM instruction can indifferently use fast or slow VM
registers, or mix them together, according to each specialization:

(Macro-expanded) GNU C
label_add_r0_rR_r0:

regs[0] = regs[0] + (* (long *) (slow_regs + insn[1].i));
insn += 2; // skip code ptr. and the residual slow_regs offt.
goto * insn->label;

The generator always encodes slow VM register arguments as
pre-shifted offsets from slow_regs within the VM program (here
insn[1].i).

Reading a VM slow register value still takes two inter-dependent
loads.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

51/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Slow VM registers: generated code expansion

The same VM instruction can indifferently use fast or slow VM
registers, or mix them together, according to each specialization:

(Macro-expanded) GNU C
label_add_r0_rR_r0:

regs[0] = regs[0] + (* (long *) (slow_regs + insn[1].i));
insn += 2; // skip code ptr. and the residual slow_regs offt.
goto * insn->label;

The generator always encodes slow VM register arguments as
pre-shifted offsets from slow_regs within the VM program (here
insn[1].i).

Reading a VM slow register value still takes two inter-dependent
loads.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

51/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

Slow VM registers: generated code expansion

The same VM instruction can indifferently use fast or slow VM
registers, or mix them together, according to each specialization:

(Macro-expanded) GNU C
label_add_r0_rR_r0:

regs[0] = regs[0] + (* (long *) (slow_regs + insn[1].i));
insn += 2; // skip code ptr. and the residual slow_regs offt.
goto * insn->label;

The generator always encodes slow VM register arguments as
pre-shifted offsets from slow_regs within the VM program (here
insn[1].i).

Reading a VM slow register value still takes two inter-dependent
loads.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

52/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

More on specialization: literals

We can specialize on a set of particular instruction literal arguments
as well.

The same instruction can also be made to access either a register
or a literal at some position. For example adding 1 and -1 to a VM
register is presumably common:

VM instruction specification from the “Uninspired” VM
instruction add (?Rn 1 -1, ?Rn 1 -1, !R)

code
UNINSPIRED_ARGN2 = UNINSPIRED_ARGN0 + UNINSPIRED_ARGN1;

end
end

Specialized literals are not held in the VM program (not
“residualized ”).

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

52/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

More on specialization: literals

We can specialize on a set of particular instruction literal arguments
as well.

The same instruction can also be made to access either a register
or a literal at some position. For example adding 1 and -1 to a VM
register is presumably common:

VM instruction specification from the “Uninspired” VM
instruction add (?Rn 1 -1, ?Rn 1 -1, !R)

code
UNINSPIRED_ARGN2 = UNINSPIRED_ARGN0 + UNINSPIRED_ARGN1;

end
end

Specialized literals are not held in the VM program (not
“residualized ”).

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

52/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

More on specialization: literals

We can specialize on a set of particular instruction literal arguments
as well.

The same instruction can also be made to access either a register
or a literal at some position. For example adding 1 and -1 to a VM
register is presumably common:

VM instruction specification from the “Uninspired” VM
instruction add (?Rn 1 -1, ?Rn 1 -1, !R)

code
UNINSPIRED_ARGN2 = UNINSPIRED_ARGN0 + UNINSPIRED_ARGN1;

end
end

Specialized literals are not held in the VM program (not
“residualized ”).

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

52/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

More on specialization: literals

We can specialize on a set of particular instruction literal arguments
as well.

The same instruction can also be made to access either a register
or a literal at some position. For example adding 1 and -1 to a VM
register is presumably common:

VM instruction specification from the “Uninspired” VM
instruction add (?Rn 1 -1, ?Rn 1 -1, !R)

code
UNINSPIRED_ARGN2 = UNINSPIRED_ARGN0 + UNINSPIRED_ARGN1;

end
end

Specialized literals are not held in the VM program (not
“residualized ”).

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

53/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

More on specialization: literals performance

Now regs indices are constant, and literal constants are substituted
into the VM instruction code in C.

GNU C (Macro-expanded)
label_addi_r0_n1_r0:

regs[0] = regs[0] + 1;
insn ++; // skip code ptr. only
goto * insn->label;

compiled (x86_64)
addq $8, %rax
addq $1, %rbx
jmpq *(%rax) # Jump via memory

Good!

Here GCC emitted $1 as a hardware instruction immediate. This
code reads L1d only in the fallthru part.

[Always possible with small constants on most architectures]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

53/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

More on specialization: literals performance

Now regs indices are constant, and literal constants are substituted
into the VM instruction code in C.

GNU C (Macro-expanded)
label_addi_r0_n1_r0:

regs[0] = regs[0] + 1;
insn ++; // skip code ptr. only
goto * insn->label;

compiled (x86_64)
addq $8, %rax
addq $1, %rbx
jmpq *(%rax) # Jump via memory

Good!

Here GCC emitted $1 as a hardware instruction immediate. This
code reads L1d only in the fallthru part.

[Always possible with small constants on most architectures]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

53/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

More on specialization: literals performance

Now regs indices are constant, and literal constants are substituted
into the VM instruction code in C.

GNU C (Macro-expanded)
label_addi_r0_n1_r0:

regs[0] = regs[0] + 1;
insn ++; // skip code ptr. only
goto * insn->label;

compiled (x86_64)
addq $8, %rax
addq $1, %rbx
jmpq *(%rax) # Jump via memory

Good!

Here GCC emitted $1 as a hardware instruction immediate. This
code reads L1d only in the fallthru part.

[Always possible with small constants on most architectures]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

53/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

More on specialization: literals performance

Now regs indices are constant, and literal constants are substituted
into the VM instruction code in C.

GNU C (Macro-expanded)
label_addi_r0_n1_r0:

regs[0] = regs[0] + 1;
insn ++; // skip code ptr. only
goto * insn->label;

compiled (x86_64)
addq $8, %rax
addq $1, %rbx
jmpq *(%rax) # Jump via memory

Good!

Here GCC emitted $1 as a hardware instruction immediate. This
code reads L1d only in the fallthru part.

[Always possible with small constants on most architectures]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

54/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

VM operand access is now fast in the common case

solve
d!

[Little demo of the Uninspired VM, with direct-threaded
dispatching and specialization for fast operand access]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

54/71 .

Basics Specialization Replication No-threading Closing C generation Combinatorial explosion Performance

VM operand access is now fast in the common case

solve
d!

[Little demo of the Uninspired VM, with direct-threaded
dispatching and specialization for fast operand access]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

55/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

The next bottleneck

We have solved the problem of operand access in the common case.

The interpreter bottleneck has moved: now the problem is
dispatching.

the fallthru code at the end of the typical VM instruction now
takes longer than the part doing useful work.
VM branches are less common than falling thru in real-world
programs (the down-counter example is not representative)

. . . so let’s not think about VM branches yet

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

55/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

The next bottleneck

We have solved the problem of operand access in the common case.

The interpreter bottleneck has moved: now the problem is
dispatching.

the fallthru code at the end of the typical VM instruction now
takes longer than the part doing useful work.
VM branches are less common than falling thru in real-world
programs (the down-counter example is not representative)

. . . so let’s not think about VM branches yet

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

56/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

VM instruction replication

All VM instructions but unconditional branches end with slow
fallthru code. We want to remove it.

The solution is copying compiled specialized VM instruction code
sequences one after another, concatenating them into hardware
machine-code basic blocks. Then each VM instruction in the block
automatically “falls thru” into the next.

A code pointer is only needed at the beginning of each basic block.

I call this dispatching style minimal threading: it’s an optimization
of direct threading.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

56/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

VM instruction replication

All VM instructions but unconditional branches end with slow
fallthru code. We want to remove it.

The solution is copying compiled specialized VM instruction code
sequences one after another, concatenating them into hardware
machine-code basic blocks. Then each VM instruction in the block
automatically “falls thru” into the next.

A code pointer is only needed at the beginning of each basic block.

I call this dispatching style minimal threading: it’s an optimization
of direct threading.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

56/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

VM instruction replication

All VM instructions but unconditional branches end with slow
fallthru code. We want to remove it.

The solution is copying compiled specialized VM instruction code
sequences one after another, concatenating them into hardware
machine-code basic blocks. Then each VM instruction in the block
automatically “falls thru” into the next.

A code pointer is only needed at the beginning of each basic block.

I call this dispatching style minimal threading: it’s an optimization
of direct threading.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

56/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

VM instruction replication

All VM instructions but unconditional branches end with slow
fallthru code. We want to remove it.

The solution is copying compiled specialized VM instruction code
sequences one after another, concatenating them into hardware
machine-code basic blocks. Then each VM instruction in the block
automatically “falls thru” into the next.

A code pointer is only needed at the beginning of each basic block.

I call this dispatching style minimal threading: it’s an optimization
of direct threading.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

57/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

VM instruction replication example

7

. . .

. . .

. . .

Compiled hardware machine
code for !BEGINBASICBLOCK

Compiled hardware machine
code for sub/%r1/%r0/%r1

Compiled hardware machine
code for add/%r0/nR/%r1

Compiled hardware machine
code for b/lR

Next compiled basic block

VM %r3
VM %r4
...

VM %r0
VM %r1
VM %r2
insn

slow_regs

!BEGINBASICBLOCK only advances insn past the code pointer.

The sub/%r1/%r0/%r1 VM instruction doesn’t touch L1d or even insn.

The add/%r0/nR/%r1 VM instruction has 7 as its residual literal argument on
which it was not specialized.

Branch target arguments are not specialized for: the internal VM-program
pointer is b/lR’s residual argument.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

57/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

VM instruction replication example

7

. . .

. . .

. . .

Compiled hardware machine
code for !BEGINBASICBLOCK

Compiled hardware machine
code for sub/%r1/%r0/%r1

Compiled hardware machine
code for add/%r0/nR/%r1

Compiled hardware machine
code for b/lR

Next compiled basic block

VM %r3
VM %r4
...

VM %r0
VM %r1
VM %r2
insn

slow_regs

!BEGINBASICBLOCK only advances insn past the code pointer.

The sub/%r1/%r0/%r1 VM instruction doesn’t touch L1d or even insn.

The add/%r0/nR/%r1 VM instruction has 7 as its residual literal argument on
which it was not specialized.

Branch target arguments are not specialized for: the internal VM-program
pointer is b/lR’s residual argument.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

57/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

VM instruction replication example

7

. . .

. . .

. . .

Compiled hardware machine
code for !BEGINBASICBLOCK

Compiled hardware machine
code for sub/%r1/%r0/%r1

Compiled hardware machine
code for add/%r0/nR/%r1

Compiled hardware machine
code for b/lR

Next compiled basic block

VM %r3
VM %r4
...

VM %r0
VM %r1
VM %r2
insn

slow_regs

!BEGINBASICBLOCK only advances insn past the code pointer.

The sub/%r1/%r0/%r1 VM instruction doesn’t touch L1d or even insn.

The add/%r0/nR/%r1 VM instruction has 7 as its residual literal argument on
which it was not specialized.

Branch target arguments are not specialized for: the internal VM-program
pointer is b/lR’s residual argument.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

57/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

VM instruction replication example

7

. . .

. . .

. . .

Compiled hardware machine
code for !BEGINBASICBLOCK

Compiled hardware machine
code for sub/%r1/%r0/%r1

Compiled hardware machine
code for add/%r0/nR/%r1

Compiled hardware machine
code for b/lR

Next compiled basic block

VM %r3
VM %r4
...

VM %r0
VM %r1
VM %r2
insn

slow_regs

!BEGINBASICBLOCK only advances insn past the code pointer.

The sub/%r1/%r0/%r1 VM instruction doesn’t touch L1d or even insn.

The add/%r0/nR/%r1 VM instruction has 7 as its residual literal argument on
which it was not specialized.

Branch target arguments are not specialized for: the internal VM-program
pointer is b/lR’s residual argument.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

57/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

VM instruction replication example

7

. . .

. . .

. . .

Compiled hardware machine
code for !BEGINBASICBLOCK

Compiled hardware machine
code for sub/%r1/%r0/%r1

Compiled hardware machine
code for add/%r0/nR/%r1

Compiled hardware machine
code for b/lR

Next compiled basic block

VM %r3
VM %r4
...

VM %r0
VM %r1
VM %r2
insn

slow_regs

!BEGINBASICBLOCK only advances insn past the code pointer.

The sub/%r1/%r0/%r1 VM instruction doesn’t touch L1d or even insn.

The add/%r0/nR/%r1 VM instruction has 7 as its residual literal argument on
which it was not specialized.

Branch target arguments are not specialized for: the internal VM-program
pointer is b/lR’s residual argument.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

58/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

VM instruction replication challenges

Replicating code by itself is not hard [but see Bruno’s point on slide 60]:
allocate executable memory with mmap

copy machine code for VM specialized instructions into the
executable space, delimited by label-as-value pointers.

We have to call GCC with the right options to prevent disasters:
PC-relative memory accesses or calls.
non-PIC code
at least -fno-reorder-blocks, -fpic mandatory

More subtly, GCC needs to keep its register-allocation compatible
across the code for every VM specialized instruction.

a few tricks: jumps (unreachable in replicated code) at the end
of specialized instruction code, jumping to a C jump with a
destination unknown to GCC (volatile, no-code inline asm
with constraints).

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

58/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

VM instruction replication challenges

Replicating code by itself is not hard [but see Bruno’s point on slide 60]:
allocate executable memory with mmap

copy machine code for VM specialized instructions into the
executable space, delimited by label-as-value pointers.

We have to call GCC with the right options to prevent disasters:
PC-relative memory accesses or calls.
non-PIC code
at least -fno-reorder-blocks, -fpic mandatory

More subtly, GCC needs to keep its register-allocation compatible
across the code for every VM specialized instruction.

a few tricks: jumps (unreachable in replicated code) at the end
of specialized instruction code, jumping to a C jump with a
destination unknown to GCC (volatile, no-code inline asm
with constraints).

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

58/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

VM instruction replication challenges

Replicating code by itself is not hard [but see Bruno’s point on slide 60]:
allocate executable memory with mmap

copy machine code for VM specialized instructions into the
executable space, delimited by label-as-value pointers.

We have to call GCC with the right options to prevent disasters:
PC-relative memory accesses or calls.
non-PIC code
at least -fno-reorder-blocks, -fpic mandatory

More subtly, GCC needs to keep its register-allocation compatible
across the code for every VM specialized instruction.

a few tricks: jumps (unreachable in replicated code) at the end
of specialized instruction code, jumping to a C jump with a
destination unknown to GCC (volatile, no-code inline asm
with constraints).

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

59/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

More VM instruction replication challenges

Global variable/function references are a problem (on most
architecures), but given their names in C the generator can define
macros to have them accessed thru a hidden stack-allocated
structure — convenient for C code snippets.

VM specification
wrapped-globals

printfixnum_format_string # String literals are dangerous!
end

wrapped-functions
printf
rand
xmalloc

end

Since when replication is enabled we are already relying on another
GCC extension we can afford typeof as well in the generated code,
to free the user from the need of declaring types.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

60/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

Minimal threading
Minimal threading is delicate but requires no assembly (unless
__builtin___clear_cache fails to invalidate L1i, as I saw happen
on powerpc).

Very portable: minimal threading is currently tested and working on
aarch64, alpha, arm, i386, mips, powerpc, s390, sparc, x86_64
(either endianness, either bitness) — and it probably works on
many more architectures. It currently fails on sh4, which relies
heavily on PC-relative loads.

Minimal threading does require mmap, which isn’t a problem on
GNU systems. [After my talk Bruno Haible taught me a technique I didn’t
know for working around the restrictions of W ⊕ E systems, using two mmap

mappings; still workable, but I admit that this will add some complexity]

A good dispatching model for most architectures. Where not
supported (right now on sh4) the user can always revert to direct
threading, lower-performance but as portable as GCC.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

60/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

Minimal threading
Minimal threading is delicate but requires no assembly (unless
__builtin___clear_cache fails to invalidate L1i, as I saw happen
on powerpc).

Very portable: minimal threading is currently tested and working on
aarch64, alpha, arm, i386, mips, powerpc, s390, sparc, x86_64
(either endianness, either bitness) — and it probably works on
many more architectures. It currently fails on sh4, which relies
heavily on PC-relative loads.

Minimal threading does require mmap, which isn’t a problem on
GNU systems. [After my talk Bruno Haible taught me a technique I didn’t
know for working around the restrictions of W ⊕ E systems, using two mmap

mappings; still workable, but I admit that this will add some complexity]

A good dispatching model for most architectures. Where not
supported (right now on sh4) the user can always revert to direct
threading, lower-performance but as portable as GCC.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

60/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

Minimal threading
Minimal threading is delicate but requires no assembly (unless
__builtin___clear_cache fails to invalidate L1i, as I saw happen
on powerpc).

Very portable: minimal threading is currently tested and working on
aarch64, alpha, arm, i386, mips, powerpc, s390, sparc, x86_64
(either endianness, either bitness) — and it probably works on
many more architectures. It currently fails on sh4, which relies
heavily on PC-relative loads.

Minimal threading does require mmap, which isn’t a problem on
GNU systems. [After my talk Bruno Haible taught me a technique I didn’t
know for working around the restrictions of W ⊕ E systems, using two mmap

mappings; still workable, but I admit that this will add some complexity]

A good dispatching model for most architectures. Where not
supported (right now on sh4) the user can always revert to direct
threading, lower-performance but as portable as GCC.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

60/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

Minimal threading
Minimal threading is delicate but requires no assembly (unless
__builtin___clear_cache fails to invalidate L1i, as I saw happen
on powerpc).

Very portable: minimal threading is currently tested and working on
aarch64, alpha, arm, i386, mips, powerpc, s390, sparc, x86_64
(either endianness, either bitness) — and it probably works on
many more architectures. It currently fails on sh4, which relies
heavily on PC-relative loads.

Minimal threading does require mmap, which isn’t a problem on
GNU systems. [After my talk Bruno Haible taught me a technique I didn’t
know for working around the restrictions of W ⊕ E systems, using two mmap

mappings; still workable, but I admit that this will add some complexity]

A good dispatching model for most architectures. Where not
supported (right now on sh4) the user can always revert to direct
threading, lower-performance but as portable as GCC.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

60/71 .

Basics Specialization Replication No-threading Closing Replication Challenges No assembly

Minimal threading
Minimal threading is delicate but requires no assembly (unless
__builtin___clear_cache fails to invalidate L1i, as I saw happen
on powerpc).

Very portable: minimal threading is currently tested and working on
aarch64, alpha, arm, i386, mips, powerpc, s390, sparc, x86_64
(either endianness, either bitness) — and it probably works on
many more architectures. It currently fails on sh4, which relies
heavily on PC-relative loads.

Minimal threading does require mmap, which isn’t a problem on
GNU systems. [After my talk Bruno Haible taught me a technique I didn’t
know for working around the restrictions of W ⊕ E systems, using two mmap

mappings; still workable, but I admit that this will add some complexity]

A good dispatching model for most architectures. Where not
supported (right now on sh4) the user can always revert to direct
threading, lower-performance but as portable as GCC.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

61/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

Next bottleneck: VM branches

With minimal threading we have mostly [we still need to increment insn
for VM instructions with residual arguments] eliminated fallthru overhead.

The next bottleneck to eliminate is VM branching — fallthru
overhead will also go away completely as a side effect.

All VM branching overhead comes from the direct-threading
convention of having VM program slots contain pointers to
executable code.
Moreover residual literals and slow register offsets are also
loaded from the VM program in memory, which is usually
suboptimal.

Why having the VM program as a data structure in memory at all?

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

61/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

Next bottleneck: VM branches

With minimal threading we have mostly [we still need to increment insn
for VM instructions with residual arguments] eliminated fallthru overhead.

The next bottleneck to eliminate is VM branching — fallthru
overhead will also go away completely as a side effect.

All VM branching overhead comes from the direct-threading
convention of having VM program slots contain pointers to
executable code.
Moreover residual literals and slow register offsets are also
loaded from the VM program in memory, which is usually
suboptimal.

Why having the VM program as a data structure in memory at all?

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

61/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

Next bottleneck: VM branches

With minimal threading we have mostly [we still need to increment insn
for VM instructions with residual arguments] eliminated fallthru overhead.

The next bottleneck to eliminate is VM branching — fallthru
overhead will also go away completely as a side effect.

All VM branching overhead comes from the direct-threading
convention of having VM program slots contain pointers to
executable code.
Moreover residual literals and slow register offsets are also
loaded from the VM program in memory, which is usually
suboptimal.

Why having the VM program as a data structure in memory at all?

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

61/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

Next bottleneck: VM branches

With minimal threading we have mostly [we still need to increment insn
for VM instructions with residual arguments] eliminated fallthru overhead.

The next bottleneck to eliminate is VM branching — fallthru
overhead will also go away completely as a side effect.

All VM branching overhead comes from the direct-threading
convention of having VM program slots contain pointers to
executable code.
Moreover residual literals and slow register offsets are also
loaded from the VM program in memory, which is usually
suboptimal.

Why having the VM program as a data structure in memory at all?

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

62/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

No-threading dispatch and and residual access

Introducing the last and most efficient dispatching mode, no
threading.

The idea: do away with the VM problem as a data structure, and
only keep the replicated executable code.

At this point we need some architecture-specific assembly code:
Residual literals must be materialized into hardware registers
or memory, since there is no program to load them from

Small hand-written assembly routines, to be patched with
literals. . .
. . . copied before the beginning of each VM specialized
instruction code needing residuals.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

62/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

No-threading dispatch and and residual access

Introducing the last and most efficient dispatching mode, no
threading.

The idea: do away with the VM problem as a data structure, and
only keep the replicated executable code.

At this point we need some architecture-specific assembly code:
Residual literals must be materialized into hardware registers
or memory, since there is no program to load them from

Small hand-written assembly routines, to be patched with
literals. . .
. . . copied before the beginning of each VM specialized
instruction code needing residuals.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

62/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

No-threading dispatch and and residual access

Introducing the last and most efficient dispatching mode, no
threading.

The idea: do away with the VM problem as a data structure, and
only keep the replicated executable code.

At this point we need some architecture-specific assembly code:
Residual literals must be materialized into hardware registers
or memory, since there is no program to load them from

Small hand-written assembly routines, to be patched with
literals. . .
. . . copied before the beginning of each VM specialized
instruction code needing residuals.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

62/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

No-threading dispatch and and residual access

Introducing the last and most efficient dispatching mode, no
threading.

The idea: do away with the VM problem as a data structure, and
only keep the replicated executable code.

At this point we need some architecture-specific assembly code:
Residual literals must be materialized into hardware registers
or memory, since there is no program to load them from

Small hand-written assembly routines, to be patched with
literals. . .
. . . copied before the beginning of each VM specialized
instruction code needing residuals.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

62/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

No-threading dispatch and and residual access

Introducing the last and most efficient dispatching mode, no
threading.

The idea: do away with the VM problem as a data structure, and
only keep the replicated executable code.

At this point we need some architecture-specific assembly code:
Residual literals must be materialized into hardware registers
or memory, since there is no program to load them from

Small hand-written assembly routines, to be patched with
literals. . .
. . . copied before the beginning of each VM specialized
instruction code needing residuals.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

63/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

No-threading branches

Without the VM program there is no longer need for insn either —
not even in a hardware register.

The VM instruction pointer is the same as the hardware
instruction pointer (%rip on x86_64): native hardware
branches!

Branching via a hardware register is easy in GNU C and
requires no assembly: goto *. . .

. . . but that would be suboptimal:

jmp L is usually faster than jmpq *%rax.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

63/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

No-threading branches

Without the VM program there is no longer need for insn either —
not even in a hardware register.

The VM instruction pointer is the same as the hardware
instruction pointer (%rip on x86_64): native hardware
branches!

Branching via a hardware register is easy in GNU C and
requires no assembly: goto *. . .

. . . but that would be suboptimal:

jmp L is usually faster than jmpq *%rax.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

63/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

No-threading branches

Without the VM program there is no longer need for insn either —
not even in a hardware register.

The VM instruction pointer is the same as the hardware
instruction pointer (%rip on x86_64): native hardware
branches!

Branching via a hardware register is easy in GNU C and
requires no assembly: goto *. . .

. . . but that would be suboptimal:

jmp L is usually faster than jmpq *%rax.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

63/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

No-threading branches

Without the VM program there is no longer need for insn either —
not even in a hardware register.

The VM instruction pointer is the same as the hardware
instruction pointer (%rip on x86_64): native hardware
branches!

Branching via a hardware register is easy in GNU C and
requires no assembly: goto *. . .

. . . but that would be suboptimal:

jmp L is usually faster than jmpq *%rax.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

64/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

No-threading dispatch: label arguments

Label literals, as wide constants, are painful to load on RISCs and
also force the CPU to jump thru a register or memory.

We want to replace jumps in C code snippets with the
appropriate hardware machine instructions—also in the
conditional case.
difficult, as jumps may occur anywhere within compiled C
code.
solution: provide predefined macros VMPREFIX_BRANCH_FAST,
VMPREFIX_BRANCH_FAST_IF_LESS_THAN,
VMPREFIX_BRANCH_AND_LINK_FAST, . . .

expanding to patch-ins:

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

64/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

No-threading dispatch: label arguments

Label literals, as wide constants, are painful to load on RISCs and
also force the CPU to jump thru a register or memory.

We want to replace jumps in C code snippets with the
appropriate hardware machine instructions—also in the
conditional case.
difficult, as jumps may occur anywhere within compiled C
code.
solution: provide predefined macros VMPREFIX_BRANCH_FAST,
VMPREFIX_BRANCH_FAST_IF_LESS_THAN,
VMPREFIX_BRANCH_AND_LINK_FAST, . . .

expanding to patch-ins:

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

64/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

No-threading dispatch: label arguments

Label literals, as wide constants, are painful to load on RISCs and
also force the CPU to jump thru a register or memory.

We want to replace jumps in C code snippets with the
appropriate hardware machine instructions—also in the
conditional case.
difficult, as jumps may occur anywhere within compiled C
code.
solution: provide predefined macros VMPREFIX_BRANCH_FAST,
VMPREFIX_BRANCH_FAST_IF_LESS_THAN,
VMPREFIX_BRANCH_AND_LINK_FAST, . . .

expanding to patch-ins:

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

64/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

No-threading dispatch: label arguments

Label literals, as wide constants, are painful to load on RISCs and
also force the CPU to jump thru a register or memory.

We want to replace jumps in C code snippets with the
appropriate hardware machine instructions—also in the
conditional case.
difficult, as jumps may occur anywhere within compiled C
code.
solution: provide predefined macros VMPREFIX_BRANCH_FAST,
VMPREFIX_BRANCH_FAST_IF_LESS_THAN,
VMPREFIX_BRANCH_AND_LINK_FAST, . . .

expanding to patch-ins:

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

65/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

What a patch-in is

Every patch-in use generates an sequence of 0x0s in compiled
code, of the right legnth for the missing hardware instruction(s) to
be patched in — and add a pointer to the “hole” into a global table
in a different assembly section, along with an id for the specialized
instruction and the patch-in case (unconditional branch, branch-and-link,
branch-if-less-than-zero. . .).

(Macro-expanded) GNU C, simplified
asm goto (".pushsection .data, 42\n"

" .quad hole_to_fill_%=\n"
" .quad " SPECIALIZED_INSTRUCTION_ID "\n"
" .quad " PATCH_IN_CASE "\n"
".popsection\n"
"hole_to_fill_%=:\n"
" .skip " ROUTINE_LENGTH_IN_BYTES "\n"
: : /* inputs... */
: : unreachable_label_jumping_where_gcc_cant_know);

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

65/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

What a patch-in is

Every patch-in use generates an sequence of 0x0s in compiled
code, of the right legnth for the missing hardware instruction(s) to
be patched in — and add a pointer to the “hole” into a global table
in a different assembly section, along with an id for the specialized
instruction and the patch-in case (unconditional branch, branch-and-link,
branch-if-less-than-zero. . .).

(Macro-expanded) GNU C, simplified
asm goto (".pushsection .data, 42\n"

" .quad hole_to_fill_%=\n"
" .quad " SPECIALIZED_INSTRUCTION_ID "\n"
" .quad " PATCH_IN_CASE "\n"
".popsection\n"
"hole_to_fill_%=:\n"
" .skip " ROUTINE_LENGTH_IN_BYTES "\n"
: : /* inputs... */
: : unreachable_label_jumping_where_gcc_cant_know);

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

66/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

Patch-ins in action

The assembly section containing the global table is scanned to
compute the addresses to patch within replicated code.

Jumps generated this way, and some inline asm for conditional
branches, can make VM branches optimal on a given architecture.

[Demo: disassembling and timing the down-counter under
no-threading dispatch]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

66/71 .

Basics Specialization Replication No-threading Closing Load literals in asm Branches Patch-ins

Patch-ins in action

The assembly section containing the global table is scanned to
compute the addresses to patch within replicated code.

Jumps generated this way, and some inline asm for conditional
branches, can make VM branches optimal on a given architecture.

[Demo: disassembling and timing the down-counter under
no-threading dispatch]

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

67/71 .

Basics Specialization Replication No-threading Closing Is this a JIT? The future Thanks

What should I call this?

Am I still speaking of efficient interpreters, or have I already crossed
into JIT territory? The answer may be blurry, particularly with
respect to common public expectations.

I will avoid the question, and call the software a generator of
efficient “virtual machines”.

My VM generator is called Jitter, and a VM generated by Jitter will
be “Jittery”. You are free to follow your imagination in interpreting
the name. Here are some possibilities:

a software attempting to pass for a JIT without success
a maker of JITs
something shaky and unreliable

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

67/71 .

Basics Specialization Replication No-threading Closing Is this a JIT? The future Thanks

What should I call this?

Am I still speaking of efficient interpreters, or have I already crossed
into JIT territory? The answer may be blurry, particularly with
respect to common public expectations.

I will avoid the question, and call the software a generator of
efficient “virtual machines”.

My VM generator is called Jitter, and a VM generated by Jitter will
be “Jittery”. You are free to follow your imagination in interpreting
the name. Here are some possibilities:

a software attempting to pass for a JIT without success
a maker of JITs
something shaky and unreliable

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

67/71 .

Basics Specialization Replication No-threading Closing Is this a JIT? The future Thanks

What should I call this?

Am I still speaking of efficient interpreters, or have I already crossed
into JIT territory? The answer may be blurry, particularly with
respect to common public expectations.

I will avoid the question, and call the software a generator of
efficient “virtual machines”.

My VM generator is called Jitter, and a VM generated by Jitter will
be “Jittery”. You are free to follow your imagination in interpreting
the name. Here are some possibilities:

a software attempting to pass for a JIT without success
a maker of JITs
something shaky and unreliable

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

67/71 .

Basics Specialization Replication No-threading Closing Is this a JIT? The future Thanks

What should I call this?

Am I still speaking of efficient interpreters, or have I already crossed
into JIT territory? The answer may be blurry, particularly with
respect to common public expectations.

I will avoid the question, and call the software a generator of
efficient “virtual machines”.

My VM generator is called Jitter, and a VM generated by Jitter will
be “Jittery”. You are free to follow your imagination in interpreting
the name. Here are some possibilities:

a software attempting to pass for a JIT without success
a maker of JITs
something shaky and unreliable

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

67/71 .

Basics Specialization Replication No-threading Closing Is this a JIT? The future Thanks

What should I call this?

Am I still speaking of efficient interpreters, or have I already crossed
into JIT territory? The answer may be blurry, particularly with
respect to common public expectations.

I will avoid the question, and call the software a generator of
efficient “virtual machines”.

My VM generator is called Jitter, and a VM generated by Jitter will
be “Jittery”. You are free to follow your imagination in interpreting
the name. Here are some possibilities:

a software attempting to pass for a JIT without success
a maker of JITs
something shaky and unreliable

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

67/71 .

Basics Specialization Replication No-threading Closing Is this a JIT? The future Thanks

What should I call this?

Am I still speaking of efficient interpreters, or have I already crossed
into JIT territory? The answer may be blurry, particularly with
respect to common public expectations.

I will avoid the question, and call the software a generator of
efficient “virtual machines”.

My VM generator is called Jitter, and a VM generated by Jitter will
be “Jittery”. You are free to follow your imagination in interpreting
the name. Here are some possibilities:

a software attempting to pass for a JIT without success
a maker of JITs
something shaky and unreliable

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

68/71 .

Basics Specialization Replication No-threading Closing Is this a JIT? The future Thanks

The near future

I’m releasing Jitter’s code right now, for the first time.

http://ageinghacker.net/ghm-2017

There are rough edges but the code is not terrible. If you like
languages you’ll have fun.

I want to propose Jitter as a GNU project.
Implementation-wise, rewrite rules are the most urgent thing.
[I also have to actually use the Array; that’s easy and will be ready soon,
possibly before the GHM is over. Hierarchical wrapped globals will have
to wait a little.]

I have to finish the manual. Of the already existing part I
strongly recommend the section about when not to use VMs
in the introduction.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

http://ageinghacker.net/ghm-2017

68/71 .

Basics Specialization Replication No-threading Closing Is this a JIT? The future Thanks

The near future

I’m releasing Jitter’s code right now, for the first time.

http://ageinghacker.net/ghm-2017

There are rough edges but the code is not terrible. If you like
languages you’ll have fun.

I want to propose Jitter as a GNU project.
Implementation-wise, rewrite rules are the most urgent thing.
[I also have to actually use the Array; that’s easy and will be ready soon,
possibly before the GHM is over. Hierarchical wrapped globals will have
to wait a little.]

I have to finish the manual. Of the already existing part I
strongly recommend the section about when not to use VMs
in the introduction.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

http://ageinghacker.net/ghm-2017

68/71 .

Basics Specialization Replication No-threading Closing Is this a JIT? The future Thanks

The near future

I’m releasing Jitter’s code right now, for the first time.

http://ageinghacker.net/ghm-2017

There are rough edges but the code is not terrible. If you like
languages you’ll have fun.

I want to propose Jitter as a GNU project.
Implementation-wise, rewrite rules are the most urgent thing.
[I also have to actually use the Array; that’s easy and will be ready soon,
possibly before the GHM is over. Hierarchical wrapped globals will have
to wait a little.]

I have to finish the manual. Of the already existing part I
strongly recommend the section about when not to use VMs
in the introduction.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

http://ageinghacker.net/ghm-2017

68/71 .

Basics Specialization Replication No-threading Closing Is this a JIT? The future Thanks

The near future

I’m releasing Jitter’s code right now, for the first time.

http://ageinghacker.net/ghm-2017

There are rough edges but the code is not terrible. If you like
languages you’ll have fun.

I want to propose Jitter as a GNU project.
Implementation-wise, rewrite rules are the most urgent thing.
[I also have to actually use the Array; that’s easy and will be ready soon,
possibly before the GHM is over. Hierarchical wrapped globals will have
to wait a little.]

I have to finish the manual. Of the already existing part I
strongly recommend the section about when not to use VMs
in the introduction.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

http://ageinghacker.net/ghm-2017

69/71 .

Basics Specialization Replication No-threading Closing Is this a JIT? The future Thanks

Thank you

Also thanks to the people from whose work I learned the bases on
which I built Jitter, particularly Anton Ertl. See the bibliography on
slide 70, and the NOTES file in the tarball.

My virtual machine is faster
than yours.

Any questions?

Are you thinking of some application for Jitter? Tell me.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

70/71 .

Basics Specialization Replication No-threading Closing Is this a JIT? The future Thanks

Bibliography I

Ertl, M. A. (2008). The Vmgen manual. The manual is in
Texinfo, distributed along with GForth. Do a M-x info vmgen
if you use the Emacs Info reader.

Ertl, M. A. and Gregg, D. (2004). Retargeting JIT compilers by
using C-compiler generated executable code. In Proceedings of
the 13th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’04, pages 41–50, Washington,
DC, USA. IEEE Computer Society.

Ertl, M. A., Gregg, D., Krall, A., and Paysan, B. (2002).
Vmgen – a generator of efficient virtual machine interpreters.
SoftwarePractice and Experience, 32:2002.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

71/71 .

Basics Specialization Replication No-threading Closing Is this a JIT? The future Thanks

Bibliography II

Saiu, L. (2017). The Jitter NOTES file. The NOTES file in the
current Jitter distribution contains my (crudely) annotated
bibliography, originally intended just for myself, with many
more references. Not really a literature review, but at least a
list of useful pointers to scientific publications.

Shi, Y., Gregg, D., Beatty, A., and Ertl, M. A. (2005). Virtual
machine showdown: Stack versus registers. In Proceedings of
the 1st ACM/USENIX International Conference on Virtual
Execution Environments, VEE ’05, pages 153–163, New York,
NY, USA. ACM. There exists a 2008 paper with the same title,
similar abstract and almost the same authors, clearly reporting
new developments; I haven’t found a copy. Yunhe Shi’s PhD
thesis from 2007 is also closely related, and arrives at the same
conclusions.

Luca Saiu http://ageinghacker.net The art of the language VM — GNU Hackers’ Meeting 2017

	Interpreters: fundamental techniques
	Specialization
	VM instruction replication
	No-threading dispatch
	Closing

